Книга The Scientific Basis of National Progress, Including that of Morality - читать онлайн бесплатно, автор George Gore. Cтраница 3
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
The Scientific Basis of National Progress, Including that of Morality
The Scientific Basis of National Progress, Including that of Morality
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

The Scientific Basis of National Progress, Including that of Morality

In consequence of the labours of scientific discoverers and inventors, the progress of science is such that in a very few years a knowledge of it will be indispensible to all persons engaged in superintending or carrying out manufacturing operations, and in all arts, occupations and appointments in which man is dealing with matter. Science is fast penetrating into all our manufactures and occupations, and "those who are unscientific will have much less employment and will be left behind in the race of life." England also will be compelled, by the necessities of human progress and the advance of foreign intellect, to determine and recognize the proper value of scientific research as a basis of progress. National superiority can only be maintained by being first in the race, and not by buying inventions of other nations.

The philosophy of matter is the foundation of all manufacturing arts and artistic processes; technical education, or the relation of science to manufactures, &c., can only be properly imparted upon the basis of a sufficient knowledge of theoretical science. Science tends to abbreviate mental and bodily labour. The use of our reason saves us the labour of using our senses, because it enables us to know that under certain conditions a certain effect must occur. The use of our reason and senses also saves us using our hands.

The properties of a single substance are so numerous that if a workman was to thoroughly study the whole of them, he would become a scientific authority in the subjects of heat, light, electricity, magnetism, and chemistry. A blacksmith who knew all the physical and chemical properties and relations of iron and steel would be quite a scientific philosopher.

No man has more occasion to bless the introduction of the steam-engine, machinery, the galvanic battery, and science in general, than the working mechanic, because it has mitigated his physical toil by giving him the duty of simply directing the labour instead of actually performing it; whilst it has deprived him of one kind of employment it has provided him with something better. But a few years ago the operatives in the silver-plating trade had to lay the silver on the articles with their hands, with the aid of a soldering iron; now they have simply to set their batteries in action and watch the electricity doing it for them. In a similar manner the working engineer at his metal-turning lathe has merely to direct the action of his tools whilst the steam-engine performs the heavy labour of turning.

There is not a man in this kingdom who has not derived some advantage, in one way or another, from scientific research. The advantages of gas light, electric light, rapid postal service and transmission of goods, railway travelling, steam-ships for navigation, cotton apparel, photography, cheap pottery, improved medicine and surgery, telegraphic forecasts of weather, Australian preserved meats, &c., &c., have been reaped more or less by everyone, even the very paupers. Not only has travelling been considerably cheapened and immensely increased, but also rendered more safe: – in travelling by diligence in France the average number of persons injured was 1 to every 30,000 carried; and killed, 1 in every 335,000; but by railway, notwithstanding the average length of the journey has greatly increased, the former has been diminished to 1 in 580,000, and the latter to one in five millions; safety in travelling by sea has also been greatly increased by means of improved lighthouses. By the rapid transmission of messages by telegraphs and of commodities by steam-ships and railways, the horrors of famine have been largely diminished; the health of this nation has also been improved by greater variety of foods, and the increasing cost of meat has been restrained. It is well known that in periods of famine, the great loss of life has arisen, not from universal scarcity of food, but from the loss of time in ordering and conveying it. Whilst also the steam-engine has been the means of relieving hundreds of thousands of men from mere animal toil; it has, with the aid of the printing-press, supplied them with cheap daily intelligence.

Science has also proved itself to be a great source of employment, as well as wealth. By developing new processes it has given employment to whole armies of workmen in numerous arts, manufactures, and occupations. Some of those employments necessitating scientific training. About 300,000 persons are employed on railways alone in Great Britain, besides those who were engaged in their construction; and in the postal department alone of the telegraph service of this country more than fifteen thousand operatives are employed. Chemical works also find employment for twenty-six thousand, and gasworks for ten thousand work people. The telegraphs of the United States of America alone, provide employment for about 7,000 persons; and the railways of the world employ about 1,900,000 men.

It may be objected that the extension of science in this country, instead of increasing employment for workmen has produced an opposite effect, by so increasing the production of goods by machinery, and by physical and chemical processes, that we have glutted the markets of the world in years gone by, and are now suffering the results of over-production. This is a very limited view of the case; over-production is only true of particular manufactures, and is a result of ill-directed commercial energy, to which manufacturing skill is only a servant. The objection also contains its own reply; – that it is certainly much greater to our advantage to have supplied other nations with manufactured commodities, than that other nations should have supplied us, as they would have done had they the manufacturing skill. At present, however, continental nations are gradually supplanting us in manufactures; and gradually supplying us with the goods which we formerly supplied them, and our fear is that this is largely a result of our neglect of science.

In many cases instead of superseding labour, science has changed its kind, or its mode of distribution; – in the case of steam-ships, instead of navigation being conducted entirely by nautical ability, it is partly effected by the skill of the engineer; conveyance of goods by road and canal has not been entirely supplanted, but partly supplemented by conveyance by railways. The diminution of labour which sometimes occurs in consequence of the progress of science is extremely small compared with its increase. The number of waggoners and horses now employed, merely to collect and deliver all the goods for railways, is actually much greater than the whole of those employed for conveying all the goods of the country before railways were constructed.

It would be altogether a false argument to say that the practical benefits derived from the labour of scientific discoverers by the different classes of the community are uncertain or imaginary, because the discoveries and the practical benefits are not in all cases immediately connected. We know that the consumers of tea in this country derive benefit from the grower of that herb in China through the hands of a series of intervening agents, as certainly as if they received the tea direct from his hands. Cause and effect are inseparable, and the remote effect of a series of connected causes is not less certain than the immediate ones.

It is a remarkable fact, that of the multitude of rich manufacturers, merchants, capitalists, and land-owners in this country, who have derived such great pecuniary benefits from original scientific research, there is scarcely one who has ever given to a scientific society, institution, or investigator, a single thousand pounds for the aid of pure research in experimental physics or chemistry;4 the nearest approach to exceptions are a very few wealthy persons who have devoted themselves personally to scientific discovery. Manufacturers have willingly reaped the advantages of the labours of unpaid discoverers, but have not adequately sowed the means of future progress. Many of those manufacturers and others would, however, willingly give money towards such an object if they understood the value and the necessity of scientific research.

Whilst also many millions of pounds are annually expended in this country upon religious, philanthropic and other good objects, there is scarcely a scientific society or institution (with the exception of the Royal Society and the British Association) which expends even the small sum of five hundred pounds a year on pure experimental research in physics or chemistry. In the Royal Institution of Great Britain, the average annual expenses relating to experimental research, including salaries to assistants for research in the laboratory, from the year 1867 to 1871, did not amount to two hundred and fifty pounds. On the other hand, the "total net receipts" of the British and Foreign Bible Society alone, amount to about £213,000 a year. These circumstances strongly indicate extreme ignorance of the value and necessity of new scientific knowledge, and an equally strong desire to aid any good object which is understood. The money given to charitable and religious objects is largely a result of the unpaid labours of scientific investigators in the manner already described. The fact that verifiable truth is seriously neglected, whilst millions of pounds are annually devoted in this country to the support of dogmas and doctrines, proves that the English nation is even now in a very imperfectly civilized state.

Considering the multiplicity and variety of philanthropic institutions and bequests in this country, and the great effect original scientific research has in ameliorating the condition of mankind, and reducing the amount of human misery, it is surprising that no wealthy philanthropic individual has bequeathed funds for the endowment of an institution for pure research in physics or chemistry.5 In America, the Smithsonian Institution was founded at Washington by benevolent and patriotic persons,6 "for the increase and diffusion of knowledge among men," and one of the objects of that institution is "to enlarge the existing stock of knowledge by the addition of new truths," and a portion of its plan is "to stimulate men of talent to make original researches by offering suitable rewards for memoirs containing new truths," and "to appropriate annually a portion of the income for particular researches."

What is the reason that scientific research is not sufficiently encouraged in England? It is chiefly ignorance. There are very few good and important subjects, understood by the public, which are not in this country greatly assisted, nor many valuable public servants, whose labours are understood, who do not receive liberal payment and reward; and scientific research and discoverers therefore are neglected, not wilfully, nor because persons are unwilling to encourage good objects, but because scientific discovery and its great value to the nation are so little known. Scarcely a member of our legislature, or of our Universities, is fully acquainted with the national importance of scientific discovery,7 and it would probably be impossible to find a subject of such great magnitude so little understood. Comparatively few persons have clear ideas of the essential differences between scientific instruction and research.

Scientific research can only be successfully pursued by employing the highest motive – viz., a love of truth in preference to all things; and this is a condition which very few persons really understand, and a principle which a still smaller number practise. Men in this country are so accustomed to be actuated by the less noble motive of immediate self-interest or of some apparent practical result, that they cannot perceive that in scientific investigation the most valuable results can only be obtained by employing the highest motive. However necessary and effective the motive of immediate self-interest or of apparent practical result may be in ordinary affairs of life, it will not enable a man to make many discoveries, because it leads him away from those which are possible to search for others which may or may not be possible. The beginning of discoveries are often so very small, that it requires acute senses and observation in order to perceive them; and if the mind is preoccupied with a desire to discover some particular practical object, new phenomena are overlooked. In discovery, man must follow where Nature leads.

Another cause of want of encouragement of research, is the natural selfishness which exists, though in very different degrees, in all men. Many wealthy persons wish things to remain as they are. Some manufacturers would not aid research unless they could monopolize its advantages. Students also generally prefer those subjects which are best rewarded, and do not sufficiently consider their intrinsic value. The love of truth for truth's sake alone is very weak in most men, and but few men make the greatest good their chief object in life.

The extreme ignorance in this country of the value of scientific research, is also largely due to the narrowness of the "practical" character of the English mind; men cannot perceive the deep-seated and universal sources of their wealth, and they prefer those occupations which yield the most obviously remunerative results. It is also partly due to scientific investigators themselves not having pleaded their own cause; such men have been so absorbed in the more important occupation of discovery, that they have, probably more than any other class of persons, neglected to enforce the just claims of their own subject. It is, however, chiefly caused by the influence of misapplied wealth, operating through the old Universities and large public schools. The sons of the wealthy are most of them educated at those institutions, and according to evidence supplied by University authorities to Royal Commissioners, many persons send their sons to those places for other purposes than to acquire learning, and allow them too much money. The considerable wealth of these young men supplies them with attractions which decoy them from industrious study, and the wishes of the parents and students have been largely acquiesced in by the tutors and college authorities. At our old Universities also, physical and chemical knowledge is very much less rewarded than some other subjects, though latterly a considerable improvement has been made in this respect, but even now there is not a University in the kingdom in which a knowledge in scientific research is necessary in order to obtain the highest scientific honour.8 In these various ways physical and chemical science has been kept very low in our chief seats of learning; and scientific research is greatly neglected by the governing authorities.

It is reasonable to suppose that Universities should be fountains of new theoretical scientific knowledge, as well as be the disseminators of it, and that they (especially the old ones with their rich endowments) would be certain to promote scientific research, as being especially a part of their functions; but such is not the case. Our old Universities have not established any professorships of original research; they make no payment for such labour, nor reimburse any expenditure incurred in such occupation, and afford but little facility for the prosecution of pure scientific inquiry. Further, they discourage scientific discovery by giving the greatest emoluments, and the highest honours in science they have to bestow, to young men who have never made a single original research, or discovered a new fact in science. The money paid in the form of comparatively sinecure fellowships, or retiring pensions to young men in Oxford alone, "now amounts to about eighty or ninety thousand pounds a year." It may be objected that young men are not capable of doing original research, but as they do it in German Universities, they can also do it in England, if they are properly disciplined, and are not decoyed from industry by the possession or expectation of wealth. A man who has never made a scientific research is not the most worthy recipient of the highest scientific honours, and in Germany it would not be given to him; he is not properly disciplined in the detection of error or the discernment of truth in matters of science; he is deficient in accuracy of scientific judgment, and in the true spirit of scientific inquiry.

It is unnecessary to speak of what has been done during the last few years at our old Universities and great public schools, in the erection of laboratories, and in other ways for the promotion of science, because it has been for the purposes of instruction, and not of original research. No amount of ordinary instruction in science will remedy the evils caused by want of original inquiry, because such instruction does not produce new knowledge, but only disseminates that already possessed.

Many persons in this country think that all scientific men are investigators, and that a portion of the funds of scientific institutions generally are expended upon investigation, but such is rarely the case. Many also consider that those scientific men who are applying new knowledge are discovering new truths. And nearly all persons look upon inventors as the only really practical scientific men, and upon discoverers as unpractical enthusiasts who spend their lives in pursuit of vague theories. But whilst the inventor is a great and useful agent of civilization, there is one behind him who is greater than he, viz., the man who provides him with the new knowledge upon which all his inventions must be based.

The general aspect in which scientific research is viewed by many persons in this country, is that of a refined intellectual pursuit, which may be encouraged and honoured for the purpose of maintaining the tone of society. The question, however, is not whether this nation shall encourage research as a refined intellectual occupation, but whether it will contribute towards its own welfare by aiding scientific discovery.

Many persons also look upon scientific research as a hobby or as unpractical, and upon discoverers as mere accumulators of knowledge, but this is simply in consequence of their ignorance of the subject; if discoveries were commercial commodities, the practical character of research would be within their comprehension. A man who discovers knowledge for the use of invention is quite as practical a person as he who converts that knowledge into inventions fit for practical uses. The men who thus lead practical men must be practical themselves. Scientific discoverers may be considered the most practical men in existence, because their labours give rise to greater and more numerous practical results than those of any other persons. The discovery of a single substance, such as oil-of-vitriol, or washing-soda, has led to the formation of many valuable inventions, patented or otherwise, and to the establishment of thousands of manufactories. It is well known also that scientific discoverers are ardent lovers of truth, and are therefore very willing to communicate their knowledge for the good of mankind, and that manufacturers, men of business, and others, not unfrequently obtain from them and from their published researches, information of great value to themselves without even expecting to pay for it; forgetting that a scientific man may communicate in a passing remark, information which cost him years of labour to obtain.

Some persons also think that science is changeable and uncertain – that the discoveries of one generation are disproved by those of another, because they occasionally see scientific theories altered and superseded. But the real truth of the case is that the changes in the aspect of science which we continually witness do not often result from alterations in our stock of positive knowledge, but from additions made to it. Demonstrable truth is imperishable. It is true that many theories have been invented and entertained for a while in the minds of scientific men, and have then passed away, but we must remember that these are only the scaffolding of science, and no part of its real fabric. They consist of ideas which, whilst they assist us in understanding science, and in making discoveries, form no real part of our positive knowledge.

Other persons seem to think that the laws of matter are different in the laboratory from what they are in the workshop; that the principles which regulate a scientific experiment are different from those which govern a large manufacturing process; but this is a wrong idea. The laws of matter are universal, substances have nearly the same properties in all places and in the hands of all men; water boils at the same temperature whether in the retort of a chemist, the saucepan of a kitchenmaid, or the pan of a soap-boiler; iron wire is as readily deprived of its rust in a chemist's acid bottle as in a wire-drawer's pickling tub; a piece of phosphorus will as readily ignite in the hands of a chemist as in those of a match maker; a galvanic battery yields the same quantity of electricity whether it be in the hands of an experimentalist or in those of a working electro-plater.

It is true that many things which have appeared very promising in theory or in experiment, have failed altogether in practice, but why is this? it is not that the principles of nature operated in the one case and did not operate in the other, but that we have imperfectly understood them, that from some unforeseen circumstances we have been unable to apply them; or that we have indolently abandoned them without sufficient or proper trial. In many cases we are unable to obtain the same conditions of success upon the large scale that we have upon the small one. In other cases a process fails because of its too great expense; many attempts have been made to supersede steam as a motive power by means of electro-magnetism, and engines driven by that force have been constructed of five or ten horse-power, but the cost of driving them has been found to be at least ten times the amount of that of the steam-engine of equal strength. And in other cases we fail because we attempt at once to carry out upon a large scale that which has only been the subject of limited experiment, instead of enlarging the process by small degrees, and adapting the apparatus, the materials and the treatment, to the size of the operation.

That also which appears very simple in the hands of an experimentalist, almost invariably becomes much more complex when carried into practice in a manufactory, simply because there is then a greater number of conditions to be fulfilled. Electro-plating a piece of steel with silver is to a chemist a very simple matter, because it is of no importance to him whether the silver adheres firmly, is of good colour, or is deposited at a certain cost; but with a manufacturer unless all these conditions are fulfilled, the process is a failure. These matters, however, belong to invention and not to original discovery.

We should not condemn theoretical science because we are not able, even with fair and persevering trial, to apply it to any useful purpose, but wait patiently until circumstances ripen for its application. Many inventions which are inapplicable in one state of knowledge become applicable by the progress of scientific research. The idea of an electric telegraph, attempted by Mr. Ronalds, in the year 1816, with the aid of frictional electricity, had to wait the development of the galvanic battery and the discovery of electro-magnetism before it could be successfully applied.

Many manufacturers seem to think that because some of their operations are completely routine, and have been handed down to them by their predecessors in nearly their present state, they are not at all indebted to science; but there is no manufacture, especially among metals, which has not in some degree been aided by scientific discovery.

In addition to the great benefits accruing from original research to all classes of society, our Governments have also derived immense advantages from the same source. The revenues have been greatly increased by the universal advantages conferred upon all kinds of industry and commerce by scientific knowledge. The additional taxes upon increased incomes from agriculture, arts, manufactures, mines; increased value of land and rents; investments in railway, telegraph, steam-ship and other companies, have been extremely great. From the sale of patents alone, a surplus sum of nearly six hundred thousand pounds has already accumulated. Our Governments are also indebted to original research for the use of percussion-powder, gun-cotton, improvements in cannon, projectiles, rifles, armour-plated ships, the ocean telegraph, field telegraph, the telephone, rapid postal communication, the speedy transport of troops and war-material, and a multitude of other advantages. The value of science to Governments in the prevention of war by means of more ready correspondence through telegraph is incalculable. Mr. Sumner, of America, at the period when the Atlantic telegraph was first employed, stated that the use of that telegraph averted a probable rupture between Great Britain and America. There was a period when we did not possess such evidence of the great value of science; but that time has now passed away, and our governing men have had abundant proof of the national importance of scientific discovery, and of the essential dependence of the welfare of this country upon scientific research.