banner banner banner
Эксплуатация современных судовых дизельных установок
Эксплуатация современных судовых дизельных установок
Оценить:
 Рейтинг: 0

Эксплуатация современных судовых дизельных установок


Кривая II представляет собой номинальную винтовую характеристику, относящуюся к расчетным условиям движения судна в полном грузу. Кривые 1 и 2 – соответственно внешняя и ограничительная характеристики дизеля, кривые III и IV – утяжеленные винтовые характеристики, кривая I – винтовая характеристика при плавании судна в балласте. Линии R

, R

, R

– регуляторные характеристики.

Пересечение нормальной винтовой характеристики двигателя с его номинальной внешней и ограничительной характеристиками (точка А) определяет величину допустимой длительной нагрузки и частоту вращения вала ГД (и гребного винта).

При плавании судна в балласте винтовая характеристика становится «облегченной», что связано с уменьшением осадки и, как следствие, снижением сопротивления воды движению судна. При той же частоте вращения гребного винта скорость судна возрастает.

В условиях эксплуатации довольно часто наблюдается так называемое утяжеление винтовой характеристики (кривая III). Это может быть вызвано увеличением осадки, обрастанием корпуса, волнением моря, перекладками руля при маневрировании, влиянием мелководья, буксировкой воза, тралением, работой на швартовах и др.

При работе по утяжеленной винтовой характеристике (рисунок 2.1, кривая III) допустимая нагрузка определяется положением точки Б, лежащей на ограничительной характеристике, которая условно показана прямой линией, а не ломанной кривой. В дальнейшем виды ограничительных характеристик будут рассмотрены более подробно.

Работа на швартовах соответствует кривая IV; предельную нагрузку на ней определяет точка Б'. Точка В' соответствует, значительной перегрузке при работе по внешней характеристике.

Винтовая характеристика при движении судна может располагаться левее, чем швартовная. Это может происходить на второй стадии реверса при подаче контрвоздуха, когда судно по инерции еще движется вперед, а двигатель уже раскручивает винт на задний ход. ГД в этих случаях значительно перегружается.

Мощность двигателя используется полностью при номинальном числе оборотов, в точке пересечения винтовой и внешней номинальной характеристик.

Значительная недогрузка двигателя сопровождается увеличением удельного расхода топлива, и при пониженных оборотах приводит к неустойчивой его работе, если не предусмотрены специальные конструктивные мероприятия, например, аккумуляторные системы топливоподачи.

Для судна, движущегося с определенной эксплуатационной скоростью, при определенном неизменном водоизмещении можно подобрать оптимальный винт, обеспечивающий наиболее высокий для данных условий коэффициент полезного действия, но только при n

. Теоретическая винтовая характеристика при этом проходит через точку А.

Сегодня широко распространена практика проектирования ДЭУ с винтами облегченного типа. Облегченная винтовая характеристика располагается правее теоретической, образуя 10…20 % запас по мощности. Наличие такого запаса позволит в штормовую погоду и при других сложных условиях плавания поддерживать частоту вращения, а с ней и скорость судна на прежнем уровне без перегрузки ГД.

Если произойдет утяжеление винтовой характеристики, то КПД винта, спроектированного на максимальное значение ?

при эксплуатационной или номинальной частоте вращения, будет снижаться, а коэффициенты к

и к

возрастать (рис 1.1).

Потребляемая эффективная мощность N

будет уменьшаться (точки B или Б на рис 2.1) и для обеспечения прежних оборотов ГД и скорости судна потребуется увеличение мощности и крутящего момента (точка А

). Возникшая перегрузка двигателя приведет к росту максимального давления сгорания P

, температуры выхлопных газов и удельного расхода топлива.

При плавании в балласте с уменьшенной осадкой сопротивление движению судна снижается, винтовая характеристика смещается вправо («легкий винт»), поступь винта растет, КПД винта резко снижается, коэффициенты момента и упора уменьшаются.

Момент сопротивления M

в этом случае буде значительно меньше крутящего момента развиваемого ГД при n

. Если ничего не предусмотреть, то ГД будет разгоняться до перегрузочного режима по частоте вращения, находящегося в точке пересечения мощностей соответствующих указанным моментам (точка А

). Подачу топлива и мощность ГД надо снизить, поддерживая при помощи регулятора приемлемые значения частоты вращения (не более 103…105 % n

).

При спокойной погоде скорость судна увеличивается на 1…2 узла за счет снижения сопротивления движению при меньшей осадке. Однако при сильном волнении моря высокую скорость обеспечить не удастся из-за ухудшения остойчивости судна и увеличения динамических нагрузок.

Для ВФШ рекомендуют подбирать эксплуатационную мощность при номинальной частоте вращения [1]. При этом соответствие между номинальной мощностью и номинальной частотой вращения будет достигнуто позже, при обрастании корпуса судна или при ухудшении условий плавания (волнение, движение во льдах, встречные течения и ветер).

В современных установках с ВФШ получили распространение винты с оребренным обтекателем ступицы ГВ и обтекателями с крыльевыми элементами. Они обеспечивают увеличение эффективности ГВ на 4…5 % при увеличении скорости хода судна на 1…2 % и частоты вращения ГВ на 1…1,5 оборота [5].

2.2.2. Режим работы двигателя с редукторной передачей

Работа двигателя с ВФШ и редукторной передачей позволяет существенно увеличить упор и крутящий момент на гребном винте при том же заданном значении мощности двигателя. Увеличение упора гребного винта составляет приблизительно 30 %, но при этом потребуется увеличить и диаметр винта [1]. Более значительное улучшение тяговых характеристик может быть достигнуто путем использования многоскоростных редукторов

Перед вводом в действие редуктора ГД необходимо ознакомиться с руководством по эксплуатации от производителя. Перед пуском следует убедиться в том, что уровень масла в редукторе соответствует норме, то есть убедиться в том, что на панели АПС отсутствует предупредительный сигнал. Уровень масла можно проверить и масляным щупом.

В рамках подготовки к пуску производится ручная прокачка маслом системы при помощи вспомогательного масляного насоса редуктора. Потом редуктор следует провернуть вместе с ГД. Затем вспомогательный маслонасос устанавливается в автоматический режим. Он автоматически запускается системой ДАУ перед пуском главного двигателя и работает до достижения определенного давления масла (например, для редуктора REINTJTSS VA1060K41 более 1,2 бар), потом насос автоматически отключается и смазка редуктора будет осуществляться от навесного шестеренного насоса.

При остановке ГД или падении давления ниже 1,2 bar вспомогательный насос автоматически запускается и будет работать по заданной производителем выдержке времени 10 минут после полной остановки главного двигателя.

2.2.3. Режим работы ГД в многовальных и многомашинных установках с гидромуфтами

Особенности работы в системе многовальных и многомашинных установок состоят в том, что улучшается использование мощности установки при возможности отключения отдельных двигателей. В качестве соединительно-разобщительных муфт часто используются гидравлические муфты.

В гидродинамической передаче энергия от ведущего вала передается за счет скоростного напора циркулирующей жидкости. Гидродинамическая передача включает центробежный насос, приводимый двигателем, и гидротурбины, сближенные так, что их колеса образуют торообразную полость, заполняемую рабочей жидкостью. Гидротурбина связана с валом движителя. Моменты на входном и выходном валах одинаковы и равны крутящему моменту ГД, а снижение частоты обусловлено только потерями энергии в муфте.

Общий КПД гидромуфты – это отношение мощности развиваемой гидротурбиной к подведенной мощности насоса и равен отношению частот вращения роторов турбины и насоса или иначе произведению их КПД.

Муфта должна быть заполнена жидкостью (водой, маслом или специальными смесями для гидромашин). Для включения муфты следует открыть золотник подвода рабочей жидкости из напорной цистерны на всасывание насоса гидромуфты. Энергия циркулирующей жидкости используется в турбине.

Часть жидкости сливается в сточную цистерну, откуда она забирается насосом и через фильтры и маслоохладитель подается в напорную цистерну.

При обслуживании надо обеспечить чистоту фильтров, подачу забортной воды в охладитель, чистоту забортной воды (в южных широтах на входе в охладитель следует установить ловушки для ракушек).

Следует контролировать уровни рабочей жидкости в цистернах и обеспечить надежную работу насоса.

При снижении частоты вращения ведомого вала и неизменной частоте вращения ведущего вала момент на турбинном колесе может значительно возрастать, что в случае сохранения равенства моментов на ведомом и ведущем колесах приводит к перегрузке двигателя.

Таким образом, гидромуфта не предохраняет двигатель от перегрузок, но имеется устройство для ограничения нагрузки. При заклинивании гребного винта ГД следует немедленно остановить.

Гидромуфты имеют следующие основные свойства: независимость вращения ведомого и ведущего валов, плавное трогание с места и плавный разгон, ограничение крутильных колебаний, бесшумность работы, надежность в эксплуатации, высокий КПД на номинальном режиме, простота автоматизации и управления.

Гидромуфты применяют обычно в дизель-редукторных агрегатах для эластичной связи между двигателем и движителем, демпфирования крутильных колебаний в системе валопровод-двигатель, для включения и отключения движителя, для снижения частоты вращения с целью уменьшения скорости судна.

Демпфирующая способность гидромуфт особенно значима при плавании во льдах. Элементы пропульсивного комплекса испытывают меньшие динамические нагрузки при ударах винта об лед.