banner banner banner
Эксплуатация современных судовых дизельных установок
Эксплуатация современных судовых дизельных установок
Оценить:
 Рейтинг: 0

Эксплуатация современных судовых дизельных установок


Разгон судна будет более медленным и закончится в точке пересечения с винтовой характеристикой I в точке 4 (или 4 штрих).

Исходя из вышеизложенного однозначная рекомендация следующая: нагружать двигатель надо поэтапно, по возможности медленно. Однако, при управлении ГД штурманом с мостика эта рекомендация может не выполняться.

Аналогично происходит переходный процесс при изменениии режима с С1 на малый ход (М) в последовательности 4 штрих – 5 штрих – 6–7–0.

При использовании регуляторов, реализующих ограничения по теплонапряженности и наддуву (UG-40TL, PGA, большинство электронных) ограничительная характеристика, которая будет всегда располагаться ниже линии упора, будет снижать нарастание подачи топлива (см. рис. 2.7)

2.4.2. Страгивание судна с места и его разгон

На режиме страгивания судна с места ГД может быть перегружен по крутящему моменту.

Изменение нагрузки на ГД в период разгона судна показано на рис. 2.8 [1].

Рис. 2.8. Изменение нагрузки на двигатель в период разгона судна [1].

Разгон осуществляется ступенчато. Рукоятка управления регулятором последовательно с выдержкой по времени фиксируется в нескольких промежуточных положениях. На каждом промежуточной регуляторной характеристике делается выдержка во времени, необходимая для стабилизации теплового состояния двигателя. При достаточном количестве ступеней разгона судна удается затрачивать меньшую работу двигателя и исключается вероятность его перегрузки.

При экстренном разгоне судна рукоятка управления после запуска двигателя сразу переводится из положения N

в положение, соответствующее номинальной частоте вращения коленчатого вала. Рейка топливных насосов высокого давления передвигается регулятором в положение, соответствующее максимальной подаче топлива. Изменение эффективной мощности и частоты вращения коленчатого вала в период разгона происходит по более крутой винтовой характеристике (на рис. 2.8 – по характеристике, соответствующей относительной скорости судна

= 0,4).

Двигатель выходит на внешнюю номинальную характеристику. При дальнейшем разгоне судна нагрузка на двигатель будет изменяться по внешней номинальной скоростной характеристике. Двигатель неизбежно перегружается

Точка 14 характеризует нагрузку на двигатель по окончании разгона судна. Таким образом, в штатных условиях медленный разгон осуществляется ступенчато приблизительно по винтовой теоретической характеристике.

В установках с ВРШ обеспечивается более быстрое протекание процесса разгона судна благодаря возможности полного использования эффективной мощности двигателей и получению более высоких тяговых характеристик судна

2.4.3. Реверсирование главного двигателя

Неустановившиеся процессы реверсирования и его фазы рассмотрены в известной литературе [1,9,30], поэтому ограничимся лишь рассмотрением некоторых моментов важных для обеспечения безопасной эксплуатации.

При торможении контрвоздухом (или при включения муфты реверса) резко возрастает нагрузка на ГД. Во избежание механических перегрузок контрвоздух следует подавать, когда частота вращения снизится до 30…40 % от номинального значения. Подача контрвоздуха при более высокой частоте малоэффективна из-за ограниченного поступления воздуха вследствие запаздывания момента открытия пусковых клапанов и недостаточности их время-сечения.

Реверсирование контрвоздухом может перевести судно на работу по более тяжелой винтовой характеристике нежели швартовная характеристика. Судно по инерции продолжает двигаться вперед, а ГД раскручивает винт на задний ход. Во избежание перегрузки двигателя по моменту следует снижать частоту вращения. А при работе на швартовых следует ограничивать частоту вращения во избежание перегрузки кормового конца коленчатого вала.

Реверсирование ГД, соединенного с ГВ через реверсивную муфту или реверсивный редуктор, осуществляется при снижении частоты вращения вала до 50…70 % от номинальной.

Гидродинамические передачи улучшают реверсивные свойства СДУ и сокращают время реверсирования. Время освобождения и наполнения рабочей жидкостью полостей гидромуфт составляет 5…15 с. Заполнение полости заднего хода начинается до полного опорожнения полости переднего хода. Длительность торможения ГВ составляет 10…30 с. Время реверсирования сокращается на 40…45 % [2].

В агрегатированных многомашинных редукторных установках с гидродинамическими и разобщительными фрикционными муфтами при частых переменах хода один двигатель может работать в одном направлении, а другой – в другом. Заполнение (включение) той или иной муфты быстро изменяет направление вращения гребного вала. При этом отпадает необходимость осуществлять запуски двигателей в процессе маневрирования и реверсирования судна.

При реверсировании с полного хода ГВ с помощью реверсивной муфты рукоятку ВРЧВ переводят на упор реверсирования (45…50 % от номинального значения оборотов), обеспечивая работу дизеля по регуляторной характеристике. ГВ перейдет в турбинный режим работы.

Муфта выключается когда частота вращения ГВ снизится до значения соответствующего упору реверсирования. Регулятор автоматически установит подачу холостого хода. Потом рукоятка муфты переводится на задний ход. ГД нагружается по регуляторной характеристике реверсирования, останавливается, а затем его можно нагружать по винтовой характеристике заднего хода, не выходя за пределы ограничительной характеристики [1].

В судовых дизельных установках с ВРШ реверсирование осуществляется поворотом лопастей гребного винта через нулевой шаг.

При реверсировании с полного хода Вперед конечное положение лопастей следует выбирать так, чтобы ГД в любой момент реверса не перегружался и крутящий момент на валу не превышал 100 %. Если условия работы судна предполагают частое экстренное реверсирование, ГД должен иметь запас по эффективному крутящему моменту.

Оптимальный вариант реверсирования с помощью ВРШ вручную трудно осуществить. Этим требованиям удовлетворяют автоматизированные системы управления судовыми дизельными установками с ВРШ

2.4.4. Режимы работы двигателей при циркуляции судна

По характеру воздействия на ГД весь маневр циркуляции судна следует разделять на участки входа и выхода из циркуляции и участок движения с постоянным радиусом циркуляции.

Рис. 2.9. Изменение нагрузки на двигатели при циркуляции двухвинтового судна [1].

На участках входа и выхода двигатели работают на неустановившихся режимах, вызванных изменением скорости судна, угла перекладки руля, угла дрейфа.

При сохранении радиуса циркуляции ГД работают на установившихся режимах, отличных, однако, от тех, что имели место во время хода судна на прямом курсе. При циркуляции судно движется не только по радиусу, но и с дрейфом, скорость его падает при той же частоте вращения ГВ. Винты работают в косом потоке и их КПД снижается. Нагрузка на ГД возрастает [1].

В многовальных установках наблюдается значительные перераспределения нагрузок между двигателями. Гребные винты, расположенные ближе к центру циркуляции, нагружаются в большей степени. На рисунке 2.9 показано распределение нагрузки между ГД при повороте судна налево

По оси абсцисс отложены значения углов поворота корпуса судна. В начале циркуляции правый наружный винт даже несколько разгружается, но в дальнейшем нагрузка увеличивается, превышая номинальную на 6…7 %. На левый двигатель нагрузка возрастает, достигая 170 %..

По мере поворота судна радиус циркуляции непрерывно уменьшается, а скорость судна падает. Происходит «утяжеление» винтовой характеристики. По опытным данным «утяжеление» винтовых характеристик для внутренних ГВ при циркуляции с полного хода оценивается коэффициентом 1,2…1,25, для внешних винтов – коэффициентами 1,1…1,15. Циркуляция даже при неполной частоте вращения приводит к перегрузке двигателей.

Рациональное управление такими режимами состоит в снижении частоты вращения ГД, работающего на ГВ, обращенный к центру циркуляции или полном отключении этой линии вала.

2.4.5. Управление режимами работы ГД в штормовых условиях

Плавание в неблагоприятных условиях (сильный шторм, ураган, тайфун) может привести к серьезным повреждениям корпуса, водотечности, разрыву обшивки, разрушению крепления механизмов и даже гибели судов (паромы «Эстония», «Тойя Мару», «Harta Rimba», танкеры «Китус», «Престиж», сухогрузы «Luno», «Arvin» др.). Работа ГД в штормовых условиях неизбежно связана с увеличением сопротивления движению судна, ростом и нестабильностью нагрузки на ГД. Необходимо предпринимать соответствующие обстановке действия и как можно чаще контролировать работу ГД по показаниям приборов и другими доступными способами.

При шторме бортовая и килевая качка неизбежна. Согласно требованиям РМРС главные и вспомогательные механизмы должны нормально работать при длительном крене при статических условиях на тот или иной борт до 15,0 градусов, при крене при динамических условиях (бортовой качке) до 22,5° градусов. Длительный дифферент на нос или на корму допускается до 5°, а динамический дифферент на нос или на корму (килевая качка) до 7,5°.

Рассмотрим работу ДЭУ с ВФШ в штормовых и предштормовых условиях. Изменение скорости судна и соответственно оборотов ГД вызывается: увеличением сопротивления движению из-за волновой и ветровой нагрузки, уменьшением КПД винта из-за работы в косом срезе, ограничением используемой мощности ГД, намеренным снижением скорости при возникновении ударов корпуса о волны и с целью снижения чрезмерных ускорений при качке. Предельные значения скорости можно определить по штормовым диаграммам В. Б. Липиса и Д. В. Кондрикова.

При движении навстречу волне в широком диапазоне курсовых углов возможно возникновение такого явления как слемминг (удары днищем о волны). Тогда необходимо снижение скорости и уменьшение осадки судна носом.

Нагрузки на ДЭУ неустановившиеся и непрерывно изменяющиеся во времени, так как происходят частые перекладки руля, изменение глубины погружения ГВ. Винтовая характеристика будет изменяться от утяжеленной до облегченной и обратно с изменяющейся частотой.

Необходимо обеспечить надежную работу ГД без значительных механических и тепловых перегрузок, в то же время необходимо обеспечить максимально возможное использование мощности ГД, не допуская его остановки по предельной частоте вращения. Изменение нагрузки на двигатель во время плавания в штормовых условиях можно проследить по графику, изображенному на рисунке 2.10 [9]

Рис. 2.10. Работа двигателя в штормовых условиях:

I – теоретическая винтовая характеристика, соответствующая номинальной мощности;

II, III – утяжеленная и облегченная винтовые характеристики; а

, а

– характеристики постоянной топливоподачи; b

, b

– регуляторные характеристики; b