banner banner banner
Эксплуатация современных судовых дизельных установок
Эксплуатация современных судовых дизельных установок
Оценить:
 Рейтинг: 0

Эксплуатация современных судовых дизельных установок


При эксплуатации следует обеспечить исправность автомата безопасности, наличие которого обязательно по требованиям Морского Регистра судоходства при использовании в составе гидромуфт в составе ПК.

Автомат безопасности страхует регулятор и защитит двигатель от разноса при внезапном отключении муфты [2].

Гидропередачи способны обеспечить высокие тяговые характеристики на пониженных частотах ГВ без превышения нагрузки на двигатели.

Гидропередачи по сравнению с редукторной имеют меньший К. П. Д. и большую массы и габариты. Наиболее эффективна комбинация гидродинамической и редукторной передач. На рис. 2.2. приведена типичная схема смазки редукторного агрегата и управления гидравлической муфтой.

Рис. 2.2. Схема системы смазки редуктора и управления гидромуфтой:

1 – вал отбора мощности на винт; 2 – главный упорный подшипник; 3 – управляемый клапан гидромуфты; 4 – фильтры; 5 – отсечной клапан гидромуфты; 6 – шестерня; 7,8 – роторы гидромуфты; 9 – управляемый сливной клапан; 10 – трубка подачи масла; 11 – упорный подшипник; 12 – поплавковое устройство включения резервного масляного насоса; 13,18 – напорная и маслосборная цистерны; 14,16 – терморегулировочный и невозвратно-запорный клапаны; 15 – охладители масла; 17 – резервный масляный насос с электроприводом и автоматическим управлением; 19 – основной масляный насос; 20 – опорные подшипники; 21 – зубчатое колесо

При работе масло из гравитационной цистерны поступает к отсечному клапану 5 управления гидромуфтой, который управляется пневматически дистанционно с помощью управляемого клапана 3. Масло от клапана 5 идет к сливным каналам 9, которые поддерживаются в закрытом состоянии. Затем по наполнительному каналу в ведомом валу оно поступает в межлопаточные полости ротора гидромуфты, вводя ее в действие. При перемещении золотника отсечного клапана в верхнее положение масло сливается в картер освобождая клапаны. Одновременно доступ масла к гидромуфте прекращается, а имеющееся там масло сливается в картер в течение 10…15 секунд. Таким образом муфты разобщаются

Необходимо обеспечить применение качественных масел рекомендуемой вязкости. При эксплуатации температуру масла не рекомендуется повышать более 60 С, давление масла в системе надо поддерживать в рекомендуемых пределах (обычно 0,13–0,30 МПа), для чего в гравитационной цистерне предусмотрены поплавковые ограничители уровней. Необходимо своевременно очищать фильтры и отстойники, контролировать качество масла.

Характер распределения нагрузки на работающие двигатели в одновальной двухмашинной пропульсивной установке иллюстрируется рисунком 2.3 [1].

Предполагается, что вращающий момент, поглощаемый винтом, равномерно распределяется между двумя ГД, работающими на один вал. Кривые изменения крутящих моментов при различных частотах коленчатого вала двигателей n

изображены для случаев подключения одной (линии 1) и двух (линии 2) муфт. Кривая I представляет собой винтовую характеристику, приведенную к ведомому валу гидромуфты.

Рис. 2.3. Определение режимов совместной работы двигателей с ГВ в двухмашинной одновальной установке с гидромуфтами [1].

Линии I и II являются характеристиками по максимальному крутящему моменту при работе соответственно двух и одного ГД. По точкам пересечения кривых определяют частоту вращения ведомого вала гидромуфты и гребного винта по известной частоте вращения двигателя n

.

При работе двух двигателей на номинальном режиме рабочая точка режима, находится в точке А. Частота вращения ведомого вала гидромуфты равна n

Если работает один двигатель, то максимально допустимый момент будет достигаться в точке В, при частоте вращения ГД n

и частоте вращения ведомого вала n

.

Частота вращения ведомого вала гидромуфты равна

n

= n

? ?

,

где n

– частота вращения двигателя и ведущего вала;

?

– КПД гидромуфты.

Частота вращения гребного вала,

n

= n

? i,

где i – коэффициент редукции частоты вращения.

Имея совмещенный график, изображенный на рисунке 2.4 можно вычислить при какой частоте вращения гребного вала необходимо включать в работу два двигателя, а также оценить скорость судна при работе одного двигателя.

Управление двигателями в многовальных установках имеет свои особенности. Современные ГД, как правило, комплектуются регуляторами частоты вращения реализующими защиту по перегрузке и давлению наддува. Степень неравномерности для ГД, работающих в одновальных установках выставляется в пределах 1,5…3,0 %. В двухвальных установках она не может быть меньше 3 %, так как возможно возникновение обменных колебаний.

Повысить надежность и безопасность эксплуатации энергетических установок с двумя гребными винтами можно, если предусмотреть в системе управления обеспечение фазовой синхронизации гребных валов, которая приводит к значительному снижению вибрации на многовальных судах [5].

2.2.4. Режим работы ГД в установках с электрической передачей

Режим работы дизеля определяется при совместном рассмотрении винтовых характеристик потребителя, характеристик тягового электродвигателя и внешней характеристики дизеля.

На рис. 2.4 приведены характеристики пропульсивного комплекса буксира-спасателя. Кривые 1, 2, 3, 4 показывают механические характеристики тягового электродвигателя при различных частотах вращения дизеля. За ограничительный параметр принимают постоянство мощности электродвигателя. Если кривая изменения крутящего момента электродвигателя при постоянной его мощности (кривая III) проходит ниже механической характеристики, то на таких режимах возможна перегрузка ГД.

Гребные электрические установки постоянного тока применяют на судах с тяжелыми режимами работы (частое реверсирование, резкое изменение момента сопротивления ГВ вплоть до заклинивания, необходимость создания значительного момента на малых оборотах винта).

Реверсирование ГВ на полном ходу происходит очень быстро и имеется возможность работы на самом малом числе оборотов (4…5 % от номинального числа оборотов).

В настоящее время активно используются вынесенные электрические винторулевые комплексы типа Azipod. Принципиально эта новая система не отличается от традиционной передачи на винт. Управляемость и маневренность судов значительно улучшилась за счет повышения эффективности работы винта, который вынесен за пределы возмущенного корпусом судна потока воды.

Рис. 2.4. Характеристики ПК буксира-спасателя на номинальном и частичных режимах работы [1]:

I, II – винтовые характеристики судна на свободном ходу и на швартовых;

III – характеристика при постоянной мощности электродвигателя. 1…12 – тяговые характеристики при различных частотах вращения ГД (1…4), при различных токах возбуждения (5…8), при комбинированном способе управления (9…12)

Система обеспечивает полный упор винта в любом направлении, освобождая судно от традиционной массивной линии вала и рулевого устройства.

Типовая схема главного ВРК Azipod с электродвигателем, размещенным в гондоле, и непосредственно вращающем ГВ представлена на рисунке 2.6 [27].

Конструктивно гребной электродвигатель колонки «Азипод» встроен в стальной корпус подводной части колонки. Гребной электродвигатель имеет воздушное охлаждение, причем воздух подается из румпельного помещения (при необходимости через холодильники). Передача крутящего момента от электродвигателя к гребному винту производится через гребной вал, установленный на опорно-упорных подшипниках качения и имеющий уплотнения. Электроэнергия на привод гребного электродвигателя подается от судовой системы электропитания.

Рис. 2.5. Типовая схема ВРК с электродвигателем в гондоле [3]:

1 – электродвигатель; 2 – упорный подшипник; 3 – установочный блок; 4 – вентиляционная установка; 5 – воздухоохладитель; 6 – токосъемник; 7 – гидравлическая система поворота колонки; 8 – подшипник и уплотнения ГВ; 9 – винт фиксированного шага;

10 – гребной вал