Книга φ – Число Бога. Золотое сечение – формула мироздания - читать онлайн бесплатно, автор Марио Ливио. Cтраница 3
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
φ – Число Бога. Золотое сечение – формула мироздания
φ – Число Бога. Золотое сечение – формула мироздания
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

φ – Число Бога. Золотое сечение – формула мироздания

Наши числа – наши боги

Какие бы системы счисления, с какими бы основаниями ни применяли древние цивилизации, прежде всего, они понимали и усваивали множество целых (натуральных) чисел. Это прекрасно нам знакомые 1, 2, 3, 4… Когда люди сумели осознать, что эти числа – абстрактные понятия, им было уже несложно начать приписывать числам особые качества. По всему миру, от Греции до Индии, числа наделялись тайной властью. В некоторых древнеиндийских текстах утверждается, что числа практически божественны, обладают «природой Брамы». В этих манускриптах содержатся выражения, очень похожие на обожествление чисел, например, «слава единице». Подобным же образом знаменитый афоризм греческого математика Пифагора, о жизни и деятельности которого мы еще поговорим в ближайшем же будущем, гласит: «Все есть число». С одной стороны, подобная восторженность привела к значительному прогрессу в теории чисел, однако с другой – породила нумерологию, набор догм, согласно которым жизнь Вселенной во всех своих аспектах связана с числами и их индивидуальными свойствами. Для нумеролога числа – основа бытия, а их символические значения связаны с отношениями между небесами и деятельностью человека. Более того, если в священных писаниях упоминается то или иное число, это не может быть просто так, в любом числе есть потаенный смысл. Иногда нумерологические поветрия затрагивали целые страны. Например, в 1240 году христиане и иудеи Западной Европы ожидали пришествия некоего царя-мессии с Востока, поскольку так случилось, что 1240 год по христианскому календарю совпал с 5000 годом календаря иудейского. Не спешите отмахиваться от подобных всплесков эмоций – мол, все это наивная романтика, и подобное могло случиться лишь много веков назад: давайте вспомним, какая невероятная, смехотворная шумиха сопровождала конец минувшего тысячелетия.

Среди разновидностей нумерологии особняком стоит иудейская гематрия (вероятно, слово это родственно словосочетанию «геометрическое число» на древнегреческом) и ее исламский и греческий аналоги – хисаб аль-джумал («вычисление целого») и изопсефия (от греческого

σος «равный» и 
ψφος «галька, камешек») соответственно. В этих системах числа приписываются каждой букве алфавита (обычно древнееврейского, древнегреческого, арабского или латинского). Если сложить числовые значения букв, составляющих слово, получаются новые слова или даже фразы, которые можно интерпретировать. Особенно распространена была гематрия в рамках иудейского мистического течения, так называемой каббалы, расцвет которой пришелся на XIII–XVIII века. Иудейские ученые зачастую поражали слушателей тем, что могли в точности повторить последовательность якобы случайных чисел, на произнесение которой уходило добрых десять минут. На самом же деле они переводили отрывок из Торы на числовой язык гематрии.

Один из самых ярких примеров нумерологии – 666, «число Зверя». «Зверем» принято считать Антихриста. В «Откровении Иоанна» (13:18) мы читаем: «Здесь мудрость. Кто имеет ум, тот сочти число зверя, ибо это число человеческое; число его – шестьсот шестьдесят шесть». Слова «это число человеческое» подвигли многих христианских мистиков на то, чтобы искать и выявлять исторических лиц, имена которых, согласно гематрии или изопсефии, имели значение 666. Среди прочих это были и Нерон Цезарь, и Диоклетиан – оба они преследовали христиан. Если написать «Нерон Цезарь» буквами древнееврейского алфавита – רסק נורנ – и затем подсчитать их числовое значение согласно гематрии, получится (справа налево) 50, 200, 6, 50; 100, 60, 200 – то есть 666 в сумме. Подобным же образом, если сосчитать в имени императора Диоклетиана DIOCLES AVGVSTVS сумму значений тех букв, которые одновременно служат и римскими цифрами – D, I, C, L, V – получится опять же 666 (500 + 1 + 100 + 50 + 5 + 5 + 5). Очевидно, что все эти умозаключения не только надуманны, но и попросту ошибочны (например, чтобы вывести такое числовое значение слова «Цезарь», надо опустить из общепринятого написания одну букву с числовым значением 10).

Как ни поразительно, в 1994 году была «открыта» даже связь между числом зверя и золотым сечением (статья об этом опубликована в популярном журнале «Journal of Recreational Mathematics»). При помощи карманного калькулятора, где есть тригонометрические функции синус и косинус, можно вычислить значение выражения [sin 666° + cos (6 × 6 × 6)°]. Введите 666, нажмите клавишу [sin], сохраните это число, затем введите 216 (= 6 × 6 × 6), нажмите клавишу [cos] и сложите результат с тем числом, которое вы сохранили. Полученное число окажется довольно точным приближением к числу φ (с обратным знаком). Кстати, бывший президент США Рональд Рейган и его супруга Нэнси сменили номер своего дома в Калифорнии с 666 по Сент-Клод-роуд на 668, чтобы избежать ассоциаций с числом зверя; кроме того, кодом 666 открывался загадочный чемоданчик в фильме «Криминальное чтиво» Квентина Тарантино.

Очевидно, что мистическое отношение к целым числам зачастую связано с тем, что они проявляются в организме человека и животных и в космосе, каким его воспринимали древние культуры. Число 2, скажем, широко представлено не только в нашем теле – глаза, руки, ноги, ноздри, уши и пр.: у нас два пола, два основных светила – Солнце и Луна – и т. п. Далее, субъективное восприятие времени делится на прошлое, настоящее и будущее, а поскольку ось вращения Земли всегда направлена более или менее в одно место – примерно в сторону Полярной звезды (с небольшими отклонениями, о которых мы поговорим в главе 3) – у нас четыре времени года. Смена времен года отражает попросту то обстоятельство, что в течение года ориентация земной оси относительно солнца меняется. Чем ближе к перпендикуляру падают на Землю солнечные лучи, тем дольше день и выше температура. В целом числа во многих обстоятельствах служили своего рода посредниками между космическими явлениями и повседневной жизнью человека. Например, названия семи дней недели во многих языках, в том числе в английском, происходят от названий небесных тел, которые раньше совокупно считали планетами: Луны, Марса, Меркурия, Юпитера, Венеры, Сатурна и Солнца.

Целые числа подразделяются на четные и нечетные, и более всех подчеркивали их различия и приписывали им всевозможные диковинные качества не кто иные как пифагорейцы. В частности, как мы вскоре убедимся, интерес к золотому сечению пробудился именно благодаря тому, что пифагорейцы весьма почитали число 5 и восхищались пятиконечной звездой.

Пифагор и пифагорейцы

Пифагор родился около 570 года до н. э. на острове Самос в Эгейском море (у побережья Малой Азии), а где-то между 530 и 510 годом переселился в греческую колонию Кротон в южной Италии, которую тогда называли Великой Грецией. По всей видимости, покинуть Самос Пифагору пришлось из-за безжалостной тирании Поликрата (казнен ок. 522 г. до н. э.), который добился доминирования Самоса в Эгейском море. Вероятно, Пифагор последовал совету математика Фалеса Милетского, который, возможно, был его учителем; так или иначе, он некоторое время (чуть ли не 22 года, по некоторым источникам) прожил в Египте, где, видимо, изучал математику и философию и перенимал религиозные воззрения у египетских жрецов. Когда Египет захватили персидские войска, Пифагора, возможно, взяли в плен и вместе с египетскими священнослужителями доставили в Вавилон. Там он, вероятно, и познакомился с математическими достижениями Междуречья. Однако египетской и вавилонской математики пытливому уму Пифагора оказалось мало. Для обоих этих народов математика ограничивалась практическими «рецептами» для конкретных вычислений. А Пифагор был одним из первых, кто понял, что числа – это абстрактные понятия, существующие сами по себе.

В Италии Пифагор начал читать лекции по философии и математике, и вокруг него быстро сложился кружок последователей, в который, возможно, входила и юная прелестная Феано (дочь Милона, оказавшего ученому гостеприимство), на которой Пифагор впоследствии женился. Атмосфера Кротона оказалась крайне благоприятной для учения Пифагора, поскольку в тамошнем обществе была мода на самые разные полумистическипе культы. Для своих последователей Пифагор установил жесткие правила, обратив особое внимание на час пробуждения и час отхода ко сну. «Все дела сначала обдумай, чтоб не было худо», – повторял про себя каждый пифагореец поутру. А вечером напоминал себе:

В успокоительный сон не должно тебе погружаться,Прежде чем снова не вспомнишь о каждом сегодняшнем деле:В чем провинился? Что мог совершить? И чего не исполнил?(Пер. И. Петер)

Подробности жизни Пифагора и подлинный его вклад в развитие математики скрыты завесой неопределенности. Одна легенда гласит, что на бедре у него было золотое родимое пятно (либо бедро было целиком золотое), по которому его последователи определили, что он сын бога Аполлона. До нас не дошло ни одной биографии Пифагора, написанной в античные времена, а более поздние жизнеописания, например, «О жизни, учениях и изречениях знаменитых философов» Диогена Лаэртского, относящееся к III в., зачастую полагаются на множество различных источников, не всегда надежных. Очевидно, сам Пифагор не оставил сочинений, и все же его влияние было так велико, что наиболее преданные его последователи образовали тайное общество – братство – и впоследствии стали называться пифагорейцами. Аристипп из Кирены рассказывал, что Пифагора так нарекли потому, что он излагал (άγορεύω) истину, подобно дельфийскому оракулу (Πύθιος).

Обстоятельства смерти Пифагора столь же туманны, сколь и факты его биографии. Согласно одной легенде, дом в Кротоне, где он жил, подожгла возмущенная толпа завистников – пифагорейцы считались элитой общества, – а сам Пифагор пытался бежать и был убит, поскольку очутился у поля, засеянного бобами, а топтать бобы он не мог: для пифагорейцев они были священны. Другую версию предложил греческий ученый и философ Дикеарх из Мессены (ок. 355–280 гг. до н. э.), который утверждал, что Пифагор укрылся в храме Муз в Метапонте, где и умер, по доброй воле прожив сорок дней без пищи и воды. Совершенно иную историю рассказывал Гермипп: якобы Пифагора убили сиракузяне во время войны против армии Акраганта, к которой примкнул Пифагор.

Хотя ни самому Пифагору, ни его последователям нельзя с уверенностью приписать никаких конкретных математических достижений, несомненно, именно им удалось слить воедино математику, жизненную философию и религию, и это единство не знает себе равных в истории. С этой точки зрения интересно, пожалуй, отметить одно хронологическое совпадение: Пифагор был современником Будды и Конфуция.

В сущности, считается, что именно Пифагору мы обязаны словами «философия» («любовь к мудрости») и «математика» («предмет изучения»). «Философ» для Пифагора – тот, кто «всецело отдается поиску смысла и цели самой жизни… раскрытию тайн природы». Учение Пифагор ставил выше всех других занятий, поскольку, по его словам, «большинству людей от рождения или по природе недостает средств для достижения благосостояния и обретения власти, однако способность приобретать новые знания есть у всех». Кроме того, он прославился и доктриной метемпсихоза, переселения душ: согласно Пифагору, душа бессмертна и возрождается в телах людей и животных. Из этой доктрины следовало и строгое вегетарианство, которого придерживались пифагорейцы, поскольку в убитых животных, возможно, переселились души их друзей. Для очищения души пифагорейцы соблюдали строгие правила: например, им было запрещено есть бобы и предписывалось всячески упражнять память. Великий греческий философ Аристотель, по свидетельству Диогена Лаэртского, приводит несколько причин, по которым пифагорейцы воздерживались от бобов: «…то ли потому, что они подобны срамным членам, то ли вратам Аида, то ли потому, что они – не коленчатые, то ли вредоносны, то ли подобны природе целокупности, то ли служат власти немногих (ибо ими бросают жребий)» (Пер. А. Ф. Лосева).

Более всего Пифагор и пифагорейцы прославились тем, что, скорее всего, сыграли важнейшую роль в развитии математики и в ее применении к концепции порядка – будь то порядок музыкальный, космический или даже этический. Каждый ребенок в школе изучает теорему Пифагора: в прямоугольном треугольнике сумма квадратов двух катетов равна квадрату гипотенузы. Геометрический смысл этой теоремы (рис. 7, справа) состоит в том, что площадь квадрата, построенного на самой длинной стороне (гипотенузе) прямоугольного треугольника, равна сумме площадей квадратов, построенных на двух коротких сторонах. Иначе говоря, если длина гипотенузы составляет с, то площадь квадрата, который на ней построен, составит с2, а площади квадратов, построенных на двух других сторонах (длиной а и b) равны а2 и b2 соответственно. Значит, теорема Пифагора может быть представлена в таком виде: в каждом прямоугольном треугольнике а2 + b2 = с2. Когда в 1971 году в республике Никарагуа отбирали десять математических формул, изменивших мир, чтобы выпустить серию почтовых марок, теорема Пифагора была напечатана на второй из них. Числа вроде 3, 4 и 5 или, скажем, 7, 24 и 25 составляют пифагоровы тройки: 32 + 42 = 52 (9 + 16 = 25), а 72 + 242 = 252 (49 + 576 = 625). Треугольники с такими длинами сторон будут прямоугольными.


рис. 7


Кроме того, на рис. 7 представлено, пожалуй, самое простое доказательство теоремы Пифагора: с одной стороны, если вычесть из квадрата со стороной а + b площади четырех равных треугольников, получится квадрат, построенный на гипотенузе (в середине). С другой стороны, если вычесть из того же квадрата те же четыре треугольника, расположив их несколько иначе (слева), получится два квадрата, построенных на коротких сторонах. То есть, очевидно, что площадь квадрата, построенного на гипотенузе, равна сумме площадей двух меньших квадратов. В своей книге «Пифагорейская гипотеза», вышедшей в 1940 году (Elisha Scott Loomis. «The Pythagorean Proposition»), математик Элиша Скотт Лумис представил 367 доказательств теоремы Пифагора – в том числе доказательства Леонардо да Винчи и Джеймса Гарфилда, двадцатого президента США.

На самом деле, пифагоровы тройки научились распознавать задолго до Пифагора, хотя теорема Пифагора как «истина», объединяющая все прямоугольные треугольники, еще не была сформулирована. Пятнадцать таких троек перечислены на вавилонской глиняной табличке, относящейся к старовавилонскому периоду (до 1600 г. до н. э.).

Вавилоняне открыли, что пифагоровы тройки можно составлять по простому правилу – «алгоритму». Возьмите любые два целые числа p и q, так чтобы p было больше q. Теперь можно составить пифагорову тройку из чисел p2 – q2; 2 pq; p2 + q2. Пусть, например, q = 1, p = 4. Тогда p2– q2 = 42–12 = 16–1 = 15; 2 pq = 2 × 4 × 1 = 8; p2 + q2 = 42 + 12= 16 + 1 = 17. Набор чисел 15, 8, 17 – это пифагорова тройка, потому что 152 + 82 = 172 (225 + 64 = 289). Вы и сами можете с легкостью показать, что это справедливо для любых целых чисел p и q. (Заинтересованный читатель найдет краткое доказательство в Приложении 1.) Следовательно, пифагоровых троек существует бесконечное множество – этот факт доказал Евклид Александрийский.

Однако в пифагорейском мире закономерности отнюдь не ограничивались одними треугольниками и вообще геометрией. Традиционно Пифагору приписывают открытие гармонических последовательностей музыкальных нот: он обнаружил, что музыкальные интервалы и высота нот соотносятся с относительной длиной вибрирующей струны. Пифагор отметил, что если разделить струну на целое количество равных промежутков, это (до некоторого предела) приводит к гармоническим и красивым (созвучным) музыкальным интервалам. Когда две произвольно выбранные музыкальные ноты звучат одновременно, обычно их сочетание кажется на наш слух грубым (несозвучным). Приятные звуки получаются лишь в отдельных сочетаниях. Пифагор обнаружил, что эти редкие созвучия возникают тогда, когда ноты производят похожие струны, чьи длины соотносятся как первые несколько целых чисел. Унисон достигается, если струны одинаковой длины (соотношение 1:1), октава – когда струны соотносятся как 1:2, квинта – 2:3, кварта – 3:4. Иначе говоря, можно ущипнуть струну и извлечь ноту. Если ущипнуть струну, которая натянута так же, как первая, но длиной вдвое меньше, услышишь ноту, которая выше первой ровно на одну гармоническую октаву. Подобным же образом 6/5 струны до дают ноту ля, 4/3 от нее дают ноту соль, 3/2 – ноту фа и т. д. Эти замечательные открытия, сделанные еще в древности, заложили основу для более глубокого понимания музыкальных интервалов, которое возникло в XVI веке (вышло так, что в разработке музыкальной теории в то время участвовал и Винченцо Галилей, отец Галилео Галилея). В 1492 году на фронтисписе книги «Theorica Musice» Франкино Гафури поместил чудесный рисунок, изображающий Пифагора, экспериментирующего со звукоизвлечением из различных предметов и устройств – тут и молотки, и струны, и бубенцы, и свирели (рис. 8; справа вверху – библейский Иувал, «отец всех играющих на гуслях и свирели» (Быт. 4:21)).


Рис. 8


Но тут пифагорейцы задумались: если даже музыкальную гармонию можно выразить в числах, вдруг получится математически описать все мироздание? Поэтому они сделали вывод, что все предметы во Вселенной обязаны своими свойствами природе числа. Скажем, астрономические наблюдения показывали, что движение небесных светил также подчинено вполне определенному порядку. Это привело к концепции прекрасной «гармонии сфер» – идее о том, что небесные тела в своем размеренном движении также создают некую гармоническую музыку. Философ Порфирий (ок. 232–304 гг. н. э.), создавший свыше семидесяти трудов по истории, метафизике и литературе, написал также (в рамках четырехтомной «Истории философии») краткое жизнеописание Пифагора – оно так и называется «Жизнь Пифагора». Вот что рассказывает Порфирий: «сам же [Пифагор] умел слышать даже вселенскую гармонию, улавливая созвучия всех сфер и движущихся по ним светил, чего нам не дано слышать по слабости нашей природы» (здесь и далее пер. М. Гаспарова). Перечислив еще несколько выдающихся качеств Пифагора, Порфирий продолжает: «Звуки семи планет, неподвижных звезд и того светила, что напротив нас и называется Противоземлей, он отождествлял с девятью Музами» (Противоземля, согласно пифагорейской теории Вселенной, вращалась напротив Земли по ту сторону огня, образующего центр мироздания). Прошло более двух тысяч лет, и знаменитый астроном Иоганн Кеплер (1571–1630) возродил и переосмыслил концепцию «гармонии сфер». Кеплеру довелось узнать много горя и столкнуться с ужасами войны, и он пришел к выводу, что на самом деле Земля порождает две ноты – ми, что значит «miseria» (лат. «несчастье») и фа, что значит «fames» (лат. «голод»). Вот как писал об этом сам Кеплер: «Земля поет “ми-фа-ми”, так что даже по первому слогу можно догадаться, что в нашем доме верховодят Несчастье и Голод».

Великий Аристотель даже посмеивался над пифагорейской одержимостью математикой. В своем труде «Метафизика» (IV век до н. э.) он писал: «В это же время и раньше так называемые пифагорейцы, занявшись математикой, первые развили ее и, овладев ею, стали считать ее начала началами всего существующего» (пер. А. Кубицкого). Хотя в наши дни некоторые причудливые идеи пифагорейцев и вправду могут показаться забавными, однако нужно понимать, что фундаментальные истины, которые за ними стоят, на самом деле не слишком отличаются от того, что говорил Альберт Эйнштейн (в письмах к Морису Соловину): «Математика – лишь средство выразить законы, управляющие природными явлениями». И в самом деле, законы физики, которые зачастую именуют законами природы, представляют собой всего-навсего математические формулы, описывающие те естественные процессы и явления, которые мы наблюдаем. К примеру, основная мысль общей теории относительности Эйнштейна состоит в том, что гравитация – не загадочная сила притяжения, действующая на расстоянии, а скорее выражение геометрии неразделимо связанных пространства и времени. Позвольте на простом примере пояснить, как геометрическое свойство пространства можно принять за силу притяжения вроде гравитации. Представьте себе, что два человека отправляются из двух разных точек, лежащих на экваторе Земли, точно на север. Это означает, что поначалу они будут двигаться параллельно, а параллельные линии, как нас учат в школе, на плоскости никогда не пересекаются. Однако на северном полюсе путешественники неминуемо встретятся. Если эти люди не знают, что на самом деле путешествуют по изогнутой поверхности сферы, они могут сделать вывод, будто их притянула некая сила: ведь они начали двигаться по параллельным линиям, а потом пришли в одну точку. Получается, что геометрическое искривление пространства может проявляться как сила притяжения. Вероятно, пифагорейцы первыми осознали абстрактную концепцию, состоящую в том, что основные силы во Вселенной можно выразить языком математики.

Особенно пифагорейцев интересовали различия между четными и нечетными числами; возможно, это было связано с простыми гармоническими соотношениями в музыке – 1:2, 2:3, 3:4. Пифагорейцы приписывали нечетным числам мужские качества, а также, не без предвзятости, свет и добро, а четным – женские качества, и связывали их с темнотой и злом. Некоторые предрассудки, связанные с четными и нечетными числами, сохранялись веками. Например, римский ученый Плиний Старший (23–79 н. э.) в своей «Historia Naturalis» (энциклопедии по естественной истории в тридцати семи томах) писал: «Почему мы придерживаемся мнения, будто для всякой цели лучше всего подходят именно нечетные числа?» Сравним эпизод из «Виндзорских насмешниц» Шекспира (акт V, сцена I), где сэр Джон Фальстаф говорит: «Я верю в нечет и всегда ставлю на нечетные числа – говорят, счастье их любит» (пер. С. Маршака, М. Морозова). Подобной точки зрения придерживаются и ближневосточные религии. Согласно исламской традиции, пророк Мухаммед, закончив пост, съел нечетное число фиников, а иудейские молитвы зачастую требуют нечетного числа (трех или семи) повторений.

Помимо ролей, которые пифагорейцы отвели четным и нечетным числам в целом, они еще и приписали особые качества некоторым отдельным числам. Например, число 1 считалось прародителем всех остальных чисел, а поэтому само оно словно бы не считалось числом. Кроме того, считалось, что оно характеризует здравый смысл. Геометрически число 1 соответствовало точке, которая сама по себе считалась прародительницей всех измерений. Число 2 было первым женским числом, а также числом разногласий и разделения. Это немного похоже на инь и ян китайской религиозной космологии, которым приписывались те же качества: инь – женское, отрицательное начало, пассивность и темнота, а ян – яркое, мужское начало. Даже в наши дни во многих языках число 2 так или иначе ассоциируется с лицемерием и ненадежностью – вспомним персидское слово «двуличный» или слово «двурушник» (или слова со значением «обладатель двойного языка», которые есть и в немецком, и в арабском). То, что число 2 изначально связали с женским началом, а 3 – с мужским, вероятно, было вызвано очертаниями женской груди и мужских гениталий. Этот вывод, пусть и с осторожностью, можно подтвердить тем обстоятельством, что такие же ассоциации возникли у восточно-африканской народности консо. В повседневной жизни мы прибегаем к разделению на две категории сплошь и рядом: хорошее и плохое, верх и низ, право и лево. С геометрической точки зрения, числу 2 соответствовала прямая (ее однозначно определяют две точки), у которой одно измерение. Три было первым настоящим мужским числом, а также числом гармонии, поскольку в нем сочетаются единство (число 1) и разделение (число 2). Для пифагорейцев число 3 вообще было в некотором смысле первым числом, поскольку у него есть и «начало», и «середина», и «конец», в отличие от числа 2, у которого «середины» нет. Геометрическое выражение числа 3 – треугольник, поскольку три точки, не лежащие на одной прямой, однозначно определяют треугольник, а сам он – двумерная геометрическая фигура.

Интересно, что военные подразделения в библейские времена также строились на основе тройки. Например, во Второй книге Царств (23) упоминаются «трое сих храбрых» воина под началом у царя Давида. В той же главе говорится и о «тридцати вождях», которые «пошли и вошли во время жатвы к Давиду в пещеру Одоллам», однако к концу главы редактор, перечислив храбрецов, вставляет ремарку: «Всех тридцать семь».