banner banner banner
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1
Оценить:
 Рейтинг: 0

Глоссариум по искусственному интеллекту: 2500 терминов. Том 1


Выпуклое множество (Convex set) – это подмножество евклидова пространства, при этом, линия, проведенная между любыми двумя точками в подмножестве, остается полностью внутри подмножества.

Выходной слой (Output layer) – это последний слой нейронов в искусственной нейронной сети, который производит заданные выходные данные для программы.

Вычисление (Computation) – это любой тип арифметического или неарифметического вычисления, которое следует четко определенной модели (например, алгоритму).

Вычисления GPU (GPU computing) – это использование графического процессора в качестве сопроцессора для ускорения центральных процессоров для научных и инженерных вычислений общего назначения.

Графический процессор ускоряет приложения, работающие на ЦП, разгружая некоторые ресурсоемкие и трудоемкие части кода. Остальная часть приложения по-прежнему работает на процессоре. С точки зрения пользователя, приложение работает быстрее, потомучто оно использует вычислительную мощность графического процессора с массовым параллелизмом для повышения производительности. Это явление известно как «гетерогенные» или «гибридные» вычисления.

Вычислительная задача (Computational problem) – это одна из трех типов математических задач, решение которых необходимо получить численно. Вычислительная задача называется хорошо обусловленной, если малым погрешностям входных данных соответствуют малые погрешности решения и плохо обусловленной, если малым погрешностям входных данных могут соответствовать сильные изменения в решении.

Вычислительная кибернетика (Computational cybernetics) – это интеграция кибернетики и методов вычислительного интеллекта.

Вычислительная математика (Computational mathematics) – это раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика – теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.

Вычислительная математика обладает широким кругом прикладных применений для проведения научных и инженерных расчётов. На её основе в последнее десятилетие образовались такие новые области естественных наук, как вычислительная химия, вычислительная биология и так далее.

Вычислительная нейробиология (Computational neuroscience) – это междисциплинарная наука, целью которой является объяснение в терминах вычислительного процесса того, как биологические системы, составляющие нервную систему, продуцируют поведение. Она связывает нейробиологию, когнитивистику и психологию с электротехникой, информатикой, вычислительной техникой, математикой и физикой.

Вычислительная система (Computing system) – это предназначенные для решения задач и обработки данных (в том числе вычислений) программно-аппаратный комплекс или несколько взаимосвязанных комплексов, образующих единую инфраструктуру.

Вычислительная статистика (Computational statistics) – это применение принципов информатики и разработки программного обеспечения для решения научных задач. Она включает в себя использование вычислительного оборудования, сетей, алгоритмов, программирования, баз данных и других предметно-ориентированных знаний для разработки симуляций физических явлений для запуска на компьютерах. Вычислительная статистика пересекает дисциплины и может даже включать гуманитарные науки.

Вычислительная теория чисел, также известная как алгоритмическая теория чисел (Computational number theory) – это изучение вычислительных методов для исследования и решения проблем в теории чисел и арифметической геометрии, включая алгоритмы проверки простоты и численной факторизации, поиска решений диофантовых уравнений и явных методов в арифметической геометрии. Теория вычислительных чисел имеет приложения к криптографии, включая RSA, криптографию на эллиптических кривых и постквантовую криптографию, и используется для исследования гипотезы и открытой проблемы теории чисел, включая гипотезу Римана, гипотезу Берча и Суиннертона-Дайера, гипотезу ABC, гипотезу модульности, гипотезу Сато-Тейта и явные аспекты программы Ленглендса.

Вычислительная химия (Computational chemistry) – это раздел химии, в котором математические методы используются для расчёта молекулярных свойств, моделирования поведения молекул, планирования синтеза, поиска в базах данных и обработки комбинаторных библиотек.

Вычислительная эффективность агента или обученной модели (Computational efficiency of an agent or a trained model) – это количество вычислительных ресурсов, необходимых агенту для решения задачи на стадии инференса.

Вычислительная эффективность интеллектуальной системы (Computational efficiency of an intelligent system) – это количество вычислительных ресурсов, необходимых для обучения интеллектуальной системы с определенным уровнем производительности на том или ином объеме задач.

Вычислительные блоки (Computing Units) – это блоки, которые работают как фильтр, который преобразовывает пакеты по определенным правилам. Набор команд вычислителя может быть ограничен, что гарантирует простую внутреннюю структуру и достаточно большую скорость работы.

Вычислительные модули (Computing modules) – это подключаемые специализированные вычислители, предназначенные для решения узконаправленных задач, таких, как ускорение работы алгоритмов искусственных нейронных сетей, компьютерное зрение, распознавание по голосу, машинное обучение и другие методы искусственного интеллекта, построены на базе нейронного процессора – специализированного класса микропроцессоров и сопроцессоров (процессор, память, передача данных).

Вычислительный интеллект (Computational intelligence) – это ответвление искусственного интеллекта. Как альтернатива классическому искусственному интеллекту, основанному на строгом логическом выводе, он опирается на эвристические алгоритмы, используемые, например, в нечёткой логике, искусственных нейронных сетях и эволюционном моделировании.

Вычислительный интеллект (Computational intelligence) – это ответвление искусственного интеллекта. Как альтернатива классическому искусственному интеллекту, основанному на строгом логическом выводе, он опирается на эвристические алгоритмы, используемые, например, в нечёткой логике, искусственных нейронных сетях и эволюционном моделировании.

Вычислительный юмор (Computational humor) – это раздел компьютерной лингвистики и искусственного интеллекта, использующий компьютеры для исследования юмора.

Выявление аномалий (также обнаружение выбросов) (Anomaly detection) – это опознавание во время интеллектуального анализа данных редких данных, событий или наблюдений, которые вызывают подозрения ввиду существенного отличия от большей части данных. Обычно аномальные данные характеризуют некоторый вид проблемы, такой как мошенничество в банке, структурный дефект, медицинские проблемы или ошибки в тексте. Аномалии также упоминаются как выбросы, необычности, шум, отклонения или исключения.

«Г»

Генеративно-состязательная сеть (Generative Adversarial Network) – это алгоритм машинного обучения без учителя, построенный на комбинации из двух нейронных сетей, одна из которых (сеть G) генерирует образцы, а другая (сеть D) старается отличить правильные («подлинные») образцы от неправильных. Так как сети G и D имеют противоположные цели – создать образцы и отбраковать образцы – между ними возникает антагонистическая игра. Генеративно-состязательную сеть описал Ян Гудфеллоу из компании Google в 2014 году.

Использование этой техники позволяет, в частности, генерировать фотографии, которые человеческим глазом воспринимаются как натуральные изображения. Например, известна попытка синтезировать фотографии кошек, которые вводят в заблуждение эксперта, считающего их естественными фото. Кроме того, GAN может использоваться для улучшения качества нечётких или частично испорченных фотографий.

Генеративные модели (Generative model) – это семейство архитектур ИИ, целью которых является создание образцов данных с нуля. Они достигают этого, фиксируя распределение данных того типа вещей, которые мы хотим генерировать. На практике модель может создать (сгенерировать) новые примеры из обучающего набора данных. Например, генеративная модель может создавать стихи после обучения на наборе данных сборника Пушкина.

Генеративный ИИ (Generative AI) – это метод ИИ, который изучает представление артефактов из данных и использует его для создания совершенно новых, полностью оригинальных артефактов, сохраняющих сходство с исходными данными.

Генератор (Generator) – это подсистема в генеративно-состязательной сети, которая создает новые примеры.

Генерация естественного языка (Natural language generation NLG) – это подмножество обработки естественного языка. В то время как понимание естественного языка сосредоточено на понимании компьютерного чтения, генерация естественного языка позволяет компьютерам писать. NLG – это процесс создания текстового ответа на человеческом языке на основе некоторых входных данных. Этот текст также можно преобразовать в речевой формат с помощью служб преобразования текста в речь. NLG также включает в себя возможности суммирования текста, которые генерируют сводки из входящих документов, сохраняя при этом целостность информации.

Генерация кандидатов (Candidate generation) – это первый этап рекомендации. По запросу система генерирует набор релевантных кандидатов.

Генерация речи (Speech generation) – это задача создания речи из какой-либо другой модальности, такой как текст, движения губ и т. д. Также под синтезом речи понимается компьютерное моделирование человеческой речи. Оно используется для преобразования письменной информации в слуховую там, где это более удобно, особенно для мобильных приложений, таких как голосовая электронная почта и единая система обмена сообщениями. Синтез речи также используется для помощи слабовидящим, так что, например, содержимое экрана дисплея может быть автоматически прочитано вслух слепому пользователю. Синтез речи является аналогом речи или распознавания голоса.

Генетический алгоритм (Genetic Algorithm) – это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе. Генетический алгоритм требует генетического представления решения и функции пригодности для оценки решения.

Генетический оператор (Genetic operator) – это оператор, используемый в генетических алгоритмах для направления алгоритма к решению данной проблемы. Существует три основных типа операторов (мутация, скрещивание и отбор), которые должны работать в сочетании друг с другом, чтобы алгоритм был успешным.

Геномные данные (Genomic data) – этот термин относится к данным генома и ДНК организма. Они используются в биоинформатике для сбора, хранения и обработки геномов живых существ. Геномные данные обычно требуют большого объема памяти и специального программного обеспечения для анализа.

Гетероассоциативная память (Hetero Associative memory) – это память, похожа на сеть автоассоциативной памяти, это также однослойная нейронная сеть. Однако в этой сети входной обучающий вектор и выходные целевые векторы не совпадают. Веса определяются таким образом, чтобы сеть хранила набор шаблонов. Гетероассоциативная сеть носит статический характер, следовательно, в ней не будет нелинейных операций и операций с запаздыванием. Архитектура, как показано на следующем рисунке, архитектура сети гетероассоциативной памяти имеет «n» количество входных обучающих векторов и «m» количество выходных целевых векторов.

Гибридизация человека и машины (Human-machine hybridization) – это технология, позволяющая соединить человеческое тело и технологическую систему. Текущий подход к разработке интеллектуальных систем (например, на основе технологий искусственного интеллекта) в основном ориентирован на данные. Он имеет ряд ограничений: принципиально невозможно собрать данные для моделирования сложных объектов и процессов; обучение нейронных сетей требует огромных вычислительных и энергетических ресурсов; и решения не объяснимы. Современные системы ИИ (основанные на узком ИИ) вряд ли можно считать интеллектом. Это скорее следующий уровень автоматизации человеческого труда.

Перспективной концепцией, лишенной вышеуказанных ограничений, является концепция гибридного интеллекта, объединяющая сильные стороны узкого ИИ и возможности человека. Гибридные интеллектуальные системы обладают следующими ключевыми особенностями: Когнитивная интероперабельность – позволяет искусственным и естественным интеллектуальным агентам легко общаться для совместного решения проблемы; Взаимная эволюция (коэволюция) – позволяет гибридной системе развиваться, накапливать знания и формировать общую онтологию предметной области. Ядром гибридизации человеко-машинного интеллекта является функциональная совместимость биологических и технических систем на разных уровнях от физических сигналов до когнитивных моделей.

Гибридные модели (Hybrid models) – это комбинации моделей на основе данных с «классическими» моделями, а также комплексирование различных методов искусственного интеллекта.

Гибридный суперкомпьютер (Hybrid supercomputer) – это вычислительная система, объединяющая ЦП традиционной архитектуры (например, x86) и ускорители, например, на вычислительных графических процессорах.

Гиперпараметр (настройка гиперпараметра) (Hyperparameter) – в машинном обучении – это параметры алгоритмов, значения которых устанавливаются перед запуском процесса обучения. Гиперпараметры используются для управления процессом обучения [[23 - Гиперпараметр [Электронный ресурс] //hmong.ru URL: https://hmong.ru/wiki/Hyper-heuristics (https://hmong.ru/wiki/Hyper-heuristics) (дата обращения: 07.07.2022)]].

Гипер-эвристика (Hyper-heuristic) – это эвристический (https://translated.turbopages.org/proxy_u/en-ru.ru.f2c5e88c-61f29877-4cd3255a-74722d776562/https/en.wikipedia.org/wiki/Heuristic) метод решения задачи, который стремится автоматизировать, часто путем включения методов машинного обучения (https://translated.turbopages.org/proxy_u/en-ru.ru.f2c5e88c-61f29877-4cd3255a-74722d776562/https/en.wikipedia.org/wiki/Machine_learning), процесс выбора, объединения, генерации или адаптации нескольких более простых эвристик (или компонентов таких эвристик) для эффективного решения задач вычислительного поиска. Одной из мотиваций для изучения гипер-эвристики является создание систем, которые могут обрабатывать классы проблем, а не решать только одну проблему.

Глубина (Depth) – это количество слоев (включая любые встраивающие слои) в нейронной сети, которые изучают веса. Например, нейронная сеть с 5 скрытыми слоями и 1 выходным слоем имеет глубину 6.

Глубокая модель (Deep model) – это тип нейронной сети, содержащий несколько скрытых слоев.

Глубокая нейронная сеть (Deep neural network, глубинная нейронная сеть, ГНС) многослойная сеть, содержащая между входным и выходным слоями несколько (много) скрытых слоёв нейронов, что позволяет моделировать сложные нелинейные отношения. ГНС сейчас всё чаще используются для решения таких задач искусственного интеллекта, как распознавание речи, обработка текстов на естественном языке, компьютерное зрение и т.п., в том числе в робототехнике.

Глубоко разделяемая сверточная нейронная сеть (Depthwise separable convolutional neural network) – это архитектура сверточной нейронной сети, основанная на Inception (раздел с данными на GitHub), но в которой модули Inception заменены свертками, отделяемыми по глубине. Также известен как Xception.

Глубокое обучение (Deep Learning) – это глубокое (глубинное) структурированное или иерархическое машинное обучение, набор алгоритмов и методов машинного обучения (machine learning) на основе различных видов представления данных. Обучение может быть контролируемым, полу-контролируемым (semi-supervised) или неконтролируемым. Использование в глубоком обучении рекуррентных нейронных сетей (recurrent neural networks), позволяет эффективно решать задачи в областях компьютерного зрения, распознавания речи, обработки текстов на естественном языке, машинного перевода, биоинформатики и др.

Государство-как-Платформа (State-as-Platform) – это концепция трансформации государственного управления с использованием возможностей, которые нам дают новые технологии. Целевой функцией реализации идеи «Государство-как-Платформа» является благополучие граждан и содействие экономическому росту, основанному на внедрении технологий. В фокусе развертывания Платформы находится гражданин в условиях новой цифровой реальности. Государство должно создать условия, которые помогут человеку раскрыть свои способности, и сформировать комфортную и безопасную среду для его жизни и реализации потенциала, а также для создания и внедрения инновационных технологий.

Градиент (Gradient) – это вектор, своим направлением указывающий направление наибольшего возрастания некоторой скалярной величины (значение которой меняется от одной точки пространства к другой, образуя скалярное поле), а по величине (модулю) равный скорости роста этой величины в этом направлении.

Градиентная обрезка (Gradient clipping) – это метод, позволяющий справиться с проблемой взрывающихся градиентов путем искусственного ограничения (отсечения) максимального значения градиентов при использовании градиентного спуска для обучения модели.

Градиентный спуск (Gradient descent) – это метод минимизации потерь путем вычисления градиентов потерь по отношению к параметрам модели на основе обучающих данных. Градиентный спуск итеративно корректирует параметры, постепенно находя наилучшую комбинацию весов и смещения для минимизации потерь.