Книга 120 лет жизни – только начало. Как победить старение? - читать онлайн бесплатно, автор Алексей Александрович Москалев. Cтраница 3
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
120 лет жизни – только начало. Как победить старение?
120 лет жизни – только начало. Как победить старение?
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

120 лет жизни – только начало. Как победить старение?

Согласно другой точке зрения, которую мы рассмотрели выше, старение является совокупностью случайных изменений и ошибок, проявляющихся в пострепродуктивный период жизни. Поскольку сила естественного отбора после достижения пика размножения постепенно идет на спад, естественный отбор перестает контролировать здоровье индивида в пожилом возрасте, ведь все равно этот период – «постгарантийный». Поэтому возникновение в ходе эволюции особой генетической программы старения, на наш взгляд, маловероятно.

В то же время продолжительность жизни может быть тесно связана с репродуктивным успехом, и таким образом механизмы, препятствующие старению и потере репродуктивной функции, будут строго контролироваться естественным отбором. Именно это и происходит с видами, обитающими в благоприятных условиях.

Например, если вид достаточно защищен от хищников – живет на деревьях, в пещерах, подземных убежищах или на глубине океана, летает, характеризуется колониальным образом жизни либо обладает большими размерами тела, – естественный отбор эффективно удаляет из популяции все варианты генов, которые имеют отсроченные вредные последствия для здоровья и обусловливают старение, прежде всего репродуктивное. Поэтому такие виды, как киты, черепахи, некоторые рыбы и птицы, отличаются завидным долголетием относительно всех других видов животных и способны оставлять потомство в течение долгих лет. Если бы люди жили в благоприятных условиях не последние сто лет, а десятки тысяч лет, то со временем мы тоже, возможно, приобрели бы защитные механизмы, обеспечивающие пренебрежимое старение.

Если особи вида истребляются в большом количестве хищниками, индивидуумы озабочены как можно более ранним оставлением потомства. В этом случае варианты генов с отсроченными вредными последствиями не отсекаются эволюционным отбором, так как не успевают проявиться и повлиять на воспроизводство потомства.

По этой причине крысы, мыши, дрозофилы, почвенные нематоды и многие другие животные являются быстро стареющими видами.

Несмотря на то что старение эволюционно не запрограммировано, оно проявляется у каждого человека.

Американский биогеронтолог Михаил Благосклонный полагает, что старением управляет квазипрограмма, являющаяся бессмысленным побочным следствием реализации генетически запрограммированного индивидуального развития. После своего выполнения программа развития выключается не полностью, и эта своеобразная «инерция» приводит к разрушительным последствиям.

Образно выражаясь, перестав расти в высоту, человек начинает расти в ширину. Старение начинается с гиперфункции на клеточном уровне. В старой, больше не делящейся клетке активизируются процессы синтеза белков, регулируемые особыми ферментами, роль которых в ходе развития заключалась в организации роста и деления клеток. Клетка увеличивается в размерах, синтезирует больше белка и подает сигналы к росту соседним клеткам.

Когда старых клеток много, функции ткани, состоящей из них, изменяются. Не изнашивание, а болезненное разрастание и гиперфункция клеток вызывают атеросклероз, ишемию, инфаркты миокарда и инсульты, остеопороз и другие возрастные заболевания. Недаром ограничительная диета, за счет которой снижается рост численности старых клеток, способствует долголетию.

Ученые сходятся во мнении, что генетическая программа старения, по-видимому, отсутствует, однако существует особая эволюционная программа долгожительства. Она возникла в ходе эволюции для переживания экстремальных внешних воздействий, таких как перегрев, переохлаждение, снижение калорийности питания. Когда условия для рождения потомства неблагоприятны, более оправданно использовать ресурсы организма на то, чтобы переждать «черную полосу», чтобы приступить к размножению позже. В условиях стресса эта программа позволяет организму замедлить старение и превысить обычную для него продолжительность жизни путем вступления в «режим поддержания». Организм тратит меньше сил на синтез белков, рост и деление клеток, приостанавливает репродукцию, а высвобожденные ресурсы направляет на повышение стрессоустойчивости. Дополнительная устойчивость позволяет не только успешно противостоять неблагоприятным воздействиям внешней среды, но и справляться с внутренними ошибками, ведущими к старению. За последние два десятилетия ученым удалось найти сотни мутаций, продлевающих продолжительность жизни и увеличивающих устойчивость к повреждениям и стрессам у различных живых существ. По-видимому, искусственно вызванные мутации, приводящие к увеличению продолжительности жизни, влияют на программу долгожительства таким образом, что особи переходят в «режим поддержания» уже независимо от изменения условий внешней среды. Кстати, некоторые геропротекторы (вещества, замедляющие старение) способны целенаправленно включать «режим поддержания», способствуя продлению жизни, но об этом – в последующих главах.

Идея программы долгожительства во многом пересекается с концепцией «гормезиса». Гормезис – это стимулирующее воздействие стресса малой силы, в то время как при большой силе тот же стресс может быть губительным. Это своеобразное «закаливание», тренировка защитных систем, только на клеточном уровне. Гормезис могут вызывать тяжелые металлы, ионизирующая и УФ-радиация, гипергравитация, гиперосмотический шок. По-видимому, возникнув в эволюции для выживания популяции в условиях экстремальных температур и кратковременного голодания, молекулярные и клеточные механизмы устойчивости к неблагоприятным факторам среды могут справляться и с другими стрессорами, играющими роль в старении. Но, конечно же, не спешите к ближайшей атомной электростанции «подзаряжаться молодостью»: для достижения позитивного влияния воздействие должно быть подобрано индивидуально и очень точно, а современный уровень развития науки пока не позволяет провести соответствующие расчеты и обеспечить необходимый уровень безопасности.

Приведу таблицу, где я кратко обобщил точки зрения на «Запрограммированность старения» (табл. 4).


Таблица 4. Точки зрения на запрограммированность старения

Миф 7

Свободные радикалы – основная причина старения

Свободнорадикальная теория старения родилась в 1956 году, когда Дэнхем Харман опубликовал знаменитую статью «Старение: теория, основанная на свободных радикалах и радиационной химии», которая была процитирована более 5500 раз. Поясним для читателя, что свободные радикалы – это химически крайне активные формы кислорода. Митохондрии – «электростанции» клетки – в ходе производства энергии создают постоянный поток свободных радикалов, являющихся побочным продуктом их работы. Будучи химически гиперактивными, они начинают взаимодействовать с окружающими структурами и веществами, повреждая их, что наносит клетке вред, так как каждый ее элемент должен иметь строго определенную структуру и химический состав для нормальной работы.

Итак, что же попытался выяснить Харман?

В экспериментах, выполненных на мышах, ему удалось доказать, что диета, чрезмерно богатая быстро окисляемыми полиненасыщенными жирными кислотами (которые в избытке содержат, например, подсолнечное, кукурузное, соевое и рапсовое масло), является канцерогенной. Он стал первым исследователем, который пытался доказать потенциальные геропротекторные свойства антиоксидантов – веществ, которые могут химически связываться со свободными радикалами и нейтрализовать их вредные свойства. Он знал, что радиация повреждает ткани, продуцируя огромное количество свободных радикалов. Поэтому он применил в качестве антиоксидантов известные к тому времени радиопротекторы, вещества, снижающие вред от облучения. В частности, был использован 2-меркаптоэтиламин. Подопытные мыши жили в среднем на 12 % дольше, однако продления максимальной продолжительности жизни (что свидетельствовало бы о замедлении старения) добиться не удалось. Для объяснения этого факта Харман выдвинул гипотезу о неспособности искусственных антиоксидантов проникать в очаг образования свободных радикалов – митохондрию.

Академик Н. М. Эммануэль, развивавший свободнорадикальную теорию старения в 1970-e годы в СССР, и его сотрудники тоже искали антиоксиданты-геропротекторы, но продолжительность жизни под их действием существенно не менялась. Даже такой всем известный и активно продвигаемый антиоксидант, как коэнзим Q10, не продлевает жизнь в специально проведенных модельных экспериментах, а разрекламированные витамины-антиоксиданты Е, А и С при переизбытке и вовсе ее укорачивают, в частности помогая выживать раковым клеткам.

Антиоксиданты – не панацея

Датские ученые, опубликовавшие результаты своего исследования в Journal of The American Medical Association, обнаружили, что люди, которые принимали три антиоксиданта: бета-каротин, витамин Е и высокую дозу витамина А, не только не увеличивали свою продолжительность жизни, а, наоборот, подвергались повышенному риску смерти. Такие выводы были сделаны по результатам 78 исследований антиоксидантных добавок, опубликованных в период между 1977 и 2012 годами. В испытаниях участвовало около 300 000 взрослых людей, средний возраст которых составлял 63 года.

«Это исследование подтверждает то, что нам и так было известно. Антиоксидантные добавки не являются эффективным спасением жизни людей и не делают их здоровее», – сказал доктор Питер Коэн, эксперт по безопасности биологически активных добавок и эксперт компании Cambridge Health Alliance.

Современный виток интереса к геропротекторным свойствам перехватчиков свободных радикалов возник благодаря труду большой группы ученых под руководством академика В. П. Скулачева. Как биоэнергетик (ученый, изучающий процессы выработки, распределения и использования энергии в живом организме), Владимир Петрович всю жизнь посвятил изучению функционирования митохондрий, что позволило ему изобрести антиоксидант, способный, как мечтал Харман, проникать в митохондрии, перехватывая радикалы на месте их массового зарождения. Однако максимальная продолжительность жизни в экспериментах, выполненных на животных из разных эволюционных групп, под действием иона Скулачева существенно не изменялась.

УЗНАЙ БОЛЬШЕ

Многие вещества, которые увеличивают жизнь модельным животным, действительно обладают некоторой способностью гасить свободные радикалы в химических реакциях вне живой клетки, в пробирке. Но, как отмечает биофизик В. К. Кольтовер, когда они попадают в клетку, их так мало, что они не могут конкурировать со встроенными защитными механизмами живого организма наподобие фермента супероксиддисмутазы (этот фермент в нашем организме является главным антиоксидантом, именно он способствует связыванию кислородных радикалов). Антиоксидантное действие геропротекторов не играет заметной роли в живом организме, однако многие из них могут стимулировать активность генов стрессоустойчивости клетки (например, вызвать усиленное производство нашей собственной супероксиддисмутазы) или предупредить образование вредных белков, что и обеспечивает замедление старения и продление жизни. Например, байкалеин, компонент некоторых лекарственных растений, продлевает жизнь нематодам на 54 % (максимальную продолжительность жизни – на 24 %). Байкалеин проявляет способность перехватывать свободные радикалы в пробирке, однако в клетке он также подавляет активность токсичных ферментов (липоксигеназы, циклооксигеназы, индуцированной синтазы оксида азота), которые усиливают склонность к воспалительным процессам, и активируют собственные антиоксидантные белки клетки (NRF-2), включая их в борьбу со свободными радикалами.

«В пробирке» изучены антиоксидантные свойства такого большого количества полезных веществ, что создается впечатление, будто эти свойства изучали только для того, чтобы отдать дань устаревшей теории, ведь ранее все старение было принято объяснять свободными радикалами, а антиоксиданты считались панацеей от проблем старости. Впрочем, грех нам жаловаться, так как в результате этих исследований мы получили много любопытных научных данных. Это заставило ученых внимательнее присмотреться к свободным радикалам и их роли в поддержании здоровья.

Наибольшее удивление вызывают даже не низкий геропротекторный отклик известных антиоксидантов. Интереснее всего то, что в небольших концентрациях сильные яды со свободнорадикальным механизмом действия, например паракват, способны вызывать у некоторых подопытных животных продление жизни до 20 %. Как говорил Фридрих Ницше, «что нас не убивает, делает нас лишь сильнее».

У некоторых модельных животных искусственное удаление генов, которые образуют такие ферменты, как супероксиддисмутаза, защищающие клетки от свободных радикалов, не только не снижает, но даже продлевает жизнь. Это явление получило название «митогормезис», которым обозначают защитное и регуляторное действие определенных митохондриальных свободных радикалов. Некоторые из них необходимы для стимуляции защитных реакций клетки, процессов передачи сигналов внутри и между клетками, в частности, для активации внутриклеточных ферментов, управляющих процессами роста и развития клетки. Еще один свободный радикал, оксид азота (NO), имеет большое значение для межклеточной сигнализации, участвуя в расширении кровеносных сосудов, эрекции полового члена, иммунном ответе, передаче нервного импульса. Таким образом, определенные свободные радикалы в малых дозах являются необходимыми и способствуют долголетию, тогда как в избытке они же токсичны и ускоряют старение.

Несколько лет назад при исследовании спортсменов было показано, что прием антиоксидантов перед физическими нагрузками не позволяет сформироваться тренированности. В недавнем исследовании 2014 года сочетание приема антиоксидантов с воздействием некоторых геропротекторов (в частности, D-глюкозамина, хорошо знакомого людям, заботящимся о состоянии суставов) отменяло действие последних и не вызывало увеличения продолжительности жизни.

Если значимость перехвата антиоксидантами свободных радикалов в живой клетке ставится под сомнение по сравнению с собственными защитными системами клетки, то более весомым доказательством справедливости свободнорадикальной теории могло бы стать увеличение продолжительности жизни при искусственной активации собственных антиоксидантных ферментов. В ряде ранних работ было показано, что сверхактивация генов антиоксидантных белков вызывает увеличение продолжительности жизни. Однако позже оказалось, что результаты не воспроизводятся и связаны с неточностями в постановке экспериментов – с заниженной продолжительностью жизни в контрольных группах животных. В других экспериментах, на дрожжах, дрозофилах и мышах, сверхактивация антиоксидантных ферментов либо не вызывала отклика, либо сокращала длительность жизни.

Таким образом, свободнорадикальная теория потерпела фиаско. Сегодня можно с уверенностью сказать, что воздействие свободных радикалов, хотя и вносит свою лепту в развитие процессов старения, не является его основной, а тем более единственной причиной.

Как помешать старению?

Наука о старении идет вперед широким шагом. Однако практического применения разработок, имеющихся в научных лабораториях, придется ждать еще десятки лет. Слишком непросто перенести эти знания на человека. А время течет, каждый новый день уносит с собой частицу здоровья. Однако реально кое-что сделать, чтобы существенно замедлить свое старение, можно уже сейчас.


Рис. 10. Составляющие здорового образа жизни, способствующего долголетию


Широкомасштабные медицинские исследования доказывают, что если люди начнут вести здоровый образ жизни в первой ее половине, средний возраст может увеличиться до 86 лет. Все, что нужно для этого, – отказаться от табака и чрезмерного потребления алкоголя (особенно крепкого), следовать советам по функциональному питанию, иметь регулярную (не менее часа ежедневно) физическую нагрузку и предотвращать психологические стрессы (рис. 10). Кроме того, необходимо периодически «тренировать» защитные системы организма и соблюдать режим сна и отдыха. Даже если вам уже за сорок, немедленный отказ от вредных привычек, правильное питание и физическая нагрузка помогут взять под контроль развитие главной причины возрастной смертности – ишемической болезни сердца. Звучит довольно знакомо, но что конкретно происходит, когда человек придерживается здорового образа жизни и чем можно помочь своему здоровому долголетию? Рассмотрим подробнее.

Наследственность

Все мы знаем об уникальных случаях долгожительства отдельных людей. Известны случаи, когда люди живут более 110 лет. Как оказалось, определяющую роль в этом явлении играют гены. Счастливый обладатель генотипа долгожителя имеет все шансы прожить более 90 лет, не прилагая для этого особых усилий. Быть может, именно вам повезло? Уже сейчас можно пройти генетические тесты и оценить свою наследственную склонность к долголетию.

Что такое генетический тест и как его пройти?

Услуги по генетическому тестированию предлагает довольно большое количество медицинских компаний. Для проведения исследований используется слюна пациента. Можно сделать анализ на вероятность развития определенных заболеваний, если вы сами знаете, что такой риск возможен.

А можно пройти комплексный тест. Сейчас такие тесты могут показать вероятность развития более 150 наследственных и 100 многофакторных заболеваний, таких как ишемическая болезнь сердца, артериальная гипертензия, сахарный диабет 2-го типа, онкологические заболевания (рак простаты, рак груди, рак желудка и т. п.), болезнь Альцгеймера, бронхиальная астма, ожирение, а также индивидуальные реакции на различные виды лекарств, свою родословную и даже долю родства с неандертальцем.

С учетом полученных данных можно подкорректировать свой образ жизни и укрепить здоровье. Но самостоятельно делать выводы не следует, для правильной расшифровки результатов теста нужно обращаться к врачу генетической консультации.

О роли генетической предрасположенности к долголетию косвенно свидетельствуют межвидовые различия продолжительности жизни. Если сравнить длительность жизни дрожжевой клетки и сосны долговечной, то окажется, что они отличаются в миллион раз. Даже срок жизни различных видов млекопитающих может различаться в сто раз (например, у бурозубок и гренландского кита). Еще более яркое подтверждение роли наследственности в долгожительстве было получено в экспериментах на подопытных животных. В 1983 году американским генетиком М. Р. Классом была доказана принципиальная возможность контролировать старение животных генетическими вмешательствами – была выведена долгоживущая линия нематод Caenorhabditis elegans. Современные исследования показывают, что генетическими манипуляциями за счет мутации определенных генов можно продлить жизнь организмов в разы: дрожжей и нематод – в 10 раз, плодовых мух и мышей – в 2 раза. Отрадно, что структурно и функционально схожие гены есть и у человека. Возможно, со временем мы научимся ими управлять для обеспечения здоровья и долгожительства людей.

Для того чтобы выяснить, насколько велика роль наследственности в обеспечении долголетия человека, обычно изучают продолжительность жизни генетически идентичных близнецов. Как показали эти исследования, вероятность прожить более 80 лет, имея среднестатистический геном, составляет 20–30 % (рис. 11). Остальной вклад в долгожительство вносят образ жизни и случайные факторы.

Наследственная природа долголетия человека подтверждается тем, что достаточно одного родителя-долгожителя, чтобы иметь высокую вероятность дожить до 100 лет.


Рис. 11. Вклад среднестатистического генома и образа жизни в долголетие человека


Если рассматривать супердолгожителей, способных прожить более 100 лет, то окажется, что они имеют существенно большую, чем остальные люди, наследственную компоненту – 33 % у женщин и 48 % у мужчин. Меньший вклад в их долгожительство факторов среды подтвердило и американское исследование супердолгожителей среди евреев ашкенази, показавшее, что долгожители достоверно не отличаются от контрольной группы по образу жизни, имея такую же подверженность основным факторам риска, среди которых повышенный индекс массы тела, употребление алкоголя или курение (табл. 5). Поскольку, как отмечалось выше, для среднестатистического генотипа факторы риска играют определяющую (75 %) роль, отсутствие различий в образе жизни обычных людей и супердолгожителей свидетельствует о гораздо большем вкладе генотипа последних.


Таблица 5. Взаимодействие факторов риска и долгожительства (по Rajpathak, Crandall, 2011)


Потомки долгожителей имеют сниженную заболеваемость возраст-зависимыми патологиями. Беспрецедентно высокая наследуемость исключительного долголетия у людей (родителей, братьев и сестер и детей долгожителя) может объясняться не столько наличием благоприятных вариантов «защитных» генов, сколько отсутствием «вредных» вариантов генов.

Итальянский генетик, профессор Болонского университета Клаудио Франчески обоснованно считает, что долголетие человека определяется взаимодействием сразу трех разных генетик: генов ядерной ДНК (то есть ДНК, содержащейся в ядре каждой нашей клетки), генов митохондриальной ДНК (собственная ДНК энергетических станций клетки – митохондрий) и генов микробиоты (совокупности бактерий), населяющей наш кишечник. Все три генетики находятся в сложном взаимодействии между собой, а также с образом жизни и окружающей средой.

Как установить, что определенный вариант (так называемая аллель) того или иного гена предрасполагает к долголетию? С этой целью проводят широкомасштабные исследования последовательностей геномов людей из разных возрастных групп. Согласно гипотезе демографической селекции, в той части популяции, которая характеризуется долгожительством, могут быть утрачены аллели, определяющие преждевременную смертность от заболеваний, связанных с возрастом и, напротив, накоплены генетические варианты, связанные с замедлением старения и повышенной стрессоустойчивостью (рис. 12).

Пройти генетическое исследование (секвенирование генома или генотипирование) сегодня становится все проще. Такую услугу оказывает целый ряд зарубежных и отечественных компаний. Пройдя такое исследование, клиент или лечащий врач получает на руки как информацию о предрасположенности к определенным заболеваниям и генетически заложенной реакции на лекарственные вещества, так и сам список имеющихся у пациента вариантов генов. Далее по тексту мы будем приводить названия генов и их вариантов, способствующих или препятствующих долголетию.

Исследование ядерного генома долгожителей (в возрасте более 90 лет) выявило связь продолжительности жизни с аллелями генов APOE и EBP1. Вариант rs4420638 в гене ApoE, регулирующем соотношение «плохого» и «хорошего» холестерина в крови, резко увеличивает риск смертности от всех возраст-зависимых причин. Напротив, носители однобуквенной замены rs2149954 (T) в гене EBP1, участвующем в передаче внутрь клетки сигналов от гормоноподобных белков – факторов роста, имеют сниженный риск смертности от сердечно-сосудистых заболеваний.


Рис. 12. Изменение частот генотипов с возрастом


В работах директора Института старения Колледжа Альберта Эйнштейна Нира Барзилая показано, что благодаря повышенной частоте определенных вариантов в генотипе (рис. 13) долгожители имеют более низкий уровень глюкозы натощак, «плохого» холестерина (липопротеинов низкой плотности), белка СЕТР, который переносит эфиры холестерина, а также высокие уровни гормона адипонектина, который препятствует росту избытка жировой ткани. Пониженный уровень белка CETP способствует более высокому уровню «хорошего» холестерина и большим размерам переносящих его частиц. Влияние этого белка было так высоко оценено, что фармацевтическая компания Merck разработала препарат, снижающий его синтез в организме и таким образом препятствующий развитию атеросклероза и целого комплекса заболеваний сердца.


Рис. 13. Изменение с возрастом частот определенных аллелей, способствующих долголетию человека


Как снизить уровень белка CETP?

Ученые из американской Школы медицины Университета Тафтс разработали препарат, ингибирующий белок CETP у людей со среднестатистическим генотипом. Его применение существенно повышает уровень «хорошего» холестерина – липопротеинов высокой плотности (ЛПВП) – как в виде совокупности методов, так и в комбинации со статинами. За счет этого снижается риск развития ишемической болезни сердца. У пациентов, получающих препарат, полезный холестерин ЛПВП повышался более чем в 2 раза – максимальный рост составил 70 против 34,5 мг/дл. А как показывают исследования, повышение концентрации холестерина ЛПВП на каждый 1 мг/дл снижает риск сердечно-сосудистых заболеваний на 2–4 %. Соответственно риск ИБС при повышении ЛПВП на 35 мг/дл снизился как минимум на 70 %.