banner banner banner
Approccio Alla Neuromatematica: Il Cervello Matematico
Approccio Alla Neuromatematica: Il Cervello Matematico
Оценить:
 Рейтинг: 0

Approccio Alla Neuromatematica: Il Cervello Matematico


- Il diencefalo è diviso in talamo (responsabile dell’integrazione di informazioni, coscienza, apprendimento, controllo emotivo e memoria) e ipotalamo (regola comportamento ed emozioni, temperatura corporea, sete e fame, cicli circadiani e stati di coscienza, secrezione dell’ormone ipofisario e regolazione del sistema nervoso autonomo).

- Il cervello, dove si sviluppano le funzioni cognitive, le decisioni consapevoli, l’apprendimento relazionale o il linguaggio, tra molte altre cose.

Una volta presentate le diverse parti, va chiarito che tutto questo appartiene a quello che è noto come sistema nervoso, il cui sviluppo inizia nel grembo materno, e al momento della nascita non ha ancora finito di formarsi, richiedendo anni per arrivare allo stato adulto.

Il sistema nervoso si sviluppa a partire dal tubo neuronale dove, intorno alla quarta settimana di gestazione, si divide in tre vescicole cerebrali, il romboencefalo, il mesencefalo e il proencefalo. A cinque settimane di gestazione, le cinque vescicole da cui si svilupperà il cervello sono già formate, dividendo il romboencefalo in metencefalo (ponte e cervelletto) e mielencefalo (tronco encefalico o bulbo); il mesencefalo darà origine al peduncolo cerebrale e quattro collicoli, due superiori legati alla vista e due inferiori legati all’udito; il proencefalo sarà diviso in due, il diencefalo (talamo, ipotalamo, sottalamo, epitalamo e terzo ventricolo) e il telencefalo (emisferi cerebrali).

Sebbene il cervello non finisca di svilupparsi all’interno dell’utero, è stato dimostrato come il bambino sia in grado di captare le differenze di stimolo, sia visive che uditive, e attraverso queste gli si può “insegnare”, ma è necessario capire i limiti del processo, perché i circuiti neurali non sono consolidati, nonostante i cambiamenti nell’attività elettrica cerebrale sono stati osservati nei neonati, a fronte di determinati stimoli presentati mentre nell’utero, confrontando i bambini esposti con quelli non esposti a determinati stimoli, mostrando così l’apprendimento.

Una volta spiegate le parti dell’encefalo e la loro differenziazione dal cervello, si deve fare la distinzione rispetto al termine usato colloquialmente per indicare la testa, che si riferirebbe al contenitore dell’encefalo, cioè quella parte protetta dalle ossa del cranio e dalle meningi (duramadre, aracnoide e piamadre) fluttuanti nel liquido cerebrospinale. È anche possibile distinguere tra:

- la materia grigia (corteccia cerebrale), formata da corpi neuronali e dendriti, dove avviene l’integrazione delle informazioni e delle funzioni cognitive superiori, e assume la forma di nuclei, corteccia e formazione reticolare.

- la sostanza bianca, costituita da fibre nervose mieliniche che interconnettono diverse aree neuronali, assumendo la forma di tratti, fascicoli e commessure.

- i nuclei striati, all’interno della sostanza bianca.

Anatomicamente, la corteccia cerebrale è divisa dal solco centrale, lasciando l’emisfero destro da un lato e il sinistro dall’altro, e sotto entrambi si trova il diencefalo, che sono strutture interne (talamo, subtalamo, ipotalamo, epitalamo metatalamico e terzo ventricolo) che si collega con il tronco cerebrale (mesencefalo, ponte varoliano e midollo allungato). Gli emisferi possono essere suddivisi in lobo frontale (situato nella parte frontale del cervello), lobo parietale (dopo il lobo frontale, sopra il lobo temporale e davanti al lobo occipitale), lobo temporale (sotto il lobo occipitale) e lobo occipitale (situato nella parte posteriore del cervello). In ognuno di questi lobi si possono identificare diverse funzioni, ma in questo testo verranno evidenziate quelle relative alla matematica, quindi:

-Il lobo frontale è dove “tutte” le informazioni vengono ricevute ed elaborate ed è associato alle funzioni esecutive, cioè la capacità di organizzazione, decisione e supervisione di queste ultime. è coinvolto nel rendimento accademico in abilità quali il calcolo mentale rapido, concettualizzazione astratta e operazioni matematiche altamente complesse.

-Il lobo parietale, che è il centro delle informazioni sensoriali, ha un ruolo preminente nel linguaggio e la sua lesione può causare difficoltà nel linguaggio, nel movimento e nella matematica, in quest’ultimo caso chiamata discalculia. Nello specifico, il lobo parietale sinistro è correlato a calcoli numerici, in modo che chi lo ha danneggiato non può riconoscere cifre aritmetiche e ha difficoltà nell’eseguire calcoli elementari.

-Il lobo temporale, coinvolto nei processi linguistici legati all’elaborazione uditiva, partecipa anche ai processi di consolidamento della memoria a lungo termine, quindi, è essenziale per la memoria di serie di numeri, così come per il linguaggio subvocale durante la risoluzione di problemi matematici.

-Il lobo occipitale, dove si trova il centro di elaborazione visiva, dove tramite i nervi ottici arrivano tutte le informazioni percepite dalla vista, essendo essenziali per la discriminazione dei simboli matematici scritti.

Per quanto riguarda la localizzazione di aspetti come l’attenzione, il linguaggio o la memoria, va notato che in ognuna di essi sono coinvolte diverse strutture. La lesione di uno dei lobi provoca la perdita totale o parziale di detta funzione. Abbandonando così definitivamente la teoria della localizzazione che ha governato per decenni lo studio delle neuroscienze, dove si trattava di assegnare a ciascuna regione del cervello una certa funzione psicologica, in modo tale che una determinata lesione impediva alla persona di svolgere quella funzione. Un esempio di localizzazione era la frenologia, dove si “interpretava” la forma della testa o ogni “uscita o entrata” del cranio come se la persona avesse una capacità maggiore o minore di un tipo o dell’altro.

Attualmente è noto che esiste una qualche specializzazione localizzata, ma che quando le regioni che “tradizionalmente” effettuano tale processo, per qualsiasi motivo, non funzionano correttamente, normalmente se ne occupano le regioni annesse. Pertanto, si può dire che le funzioni cognitive sono distribuite nel cervello, e sebbene ci siano centri specializzati per l’elaborazione di determinate informazioni, siano esse uditive, visive, propriocettive… tutto questo verrà poi distribuito per costituire le tracce di memoria.

Una volta note le strutture e le funzioni del cervello, va detto che in precedenza e tenendo conto dei limiti del tempo, questa scienza è iniziata con lo studio dei casi post-mortem, dove si analizzavano le strutture visibili danneggiate di persone che in vita mostravano qualche tipo di carenza o problema cognitivo o comportamentale. Così, uno dei casi più riconosciuti nella storia delle neuroscienze è quello di Phineas Gage (Damasio, 2018), che subì un infortunio sul lavoro in una miniera dove lavorava, con una tale sfortuna che una delle sbarre gli trafisse il cranio, da quel momento in poi il suo comportamento cambiò diventando irregolare, imprevedibile e persino temerario.

Lo studio post-mortem ha permesso di conoscere le aree colpite, in particolare il lobo frontale sinistro, che ha reso possibile stabilire le prime ipotesi sul ruolo del lobo frontale nel controllo degli impulsi e nel giudizio, nonché di dedurne il ruolo preminente nella pianificazione, coordinamento, esecuzione e supervisione dei comportamenti.

Attualmente, l’avanzamento delle tecniche consente di osservare il cervello lavorare dal vivo davanti a determinati compiti, il che ha permesso di conoscere non solo le aree cerebrali coinvolte, ma anche i percorsi di comunicazione tra aree corticali e sottocorticali di determinati processi, siano essi di tipo più fisiologico o cognitivo, che applicato al campo medico, consente di confrontare il cervello dei pazienti, con il “normale” e quindi determinare a che punto è il “problema” in ogni caso, particolarmente importante al momento dell’intervento chirurgico, quando gli altri trattamenti non hanno l’efficacia attesa per la risoluzione.

Oggigiorno, la conoscenza scientifica si ottiene con tecniche come la risonanza magnetica funzionale o l’elettroencefalografia, cioè tecniche non invasive che informano su ciò che sta accadendo all’interno della testa, ma senza la necessità di “aprire” o “attendere” l’analisi post-mortem.

Nel caso cdi cui si occupa questo libro, si trovano riferimenti nella bibliografia scientifica di lesioni legate alla matematica dal 1908, dove per la prima volta si riporta l’alterazione del calcolo; essendo nel 1919 quando fu utilizzato per la prima volta il termine acalculia, da allora iniziò una branca delle neuroscienze orientata alla conoscenza del rapporto dei processi matematici con altri processi cognitivi, tutti basati sulla conoscenza del cervello (Vargas Vargas, 2016).

La relazione tra Cervello e Matematica

Parlare di numeri significa parlare delle unità di base che verranno composte successivamente in un “linguaggio” matematico con il quale possiamo comunicare, ma è anche un modo di comprendere e manipolare la realtà che ci circonda, quindi si può considerare che le nozioni dei numeri e le quantità che rappresentano derivano dalla loro denominazione con il linguaggio. Pertanto i numeri sarebbero l’equivalente delle lettere, e le formule, le parole, potendo così comunicare pensieri e idee tanto o più complessi che con il linguaggio (Gelman & Butterworth, 2005). Basta guardare alla formula della relatività, che ha richiesto anni per essere sviluppata e dimostrata, e che attualmente è in pieno vigore nonostante gli anni trascorsi da quando è stata enunciata per la prima volta.

In precedenza, la concezione di sé di fronte agli altri, o di pochi di fronte a molti, era sufficiente a stabilire le differenze fondamentali per la convivenza, ma dall’emergere dei numeri gli elementi possono essere “divisi” in unità, contati e identificati, il che permette lo sviluppo della matematica più semplice con l’aggiunta e la sottrazione di elementi, e tutto questo grazie alle etichette verbali. I numeri, quindi, non sono importanti sia per la denominazione in sé che per il concetto di quantità ad essa associato, che adempie ad una serie di caratteristiche che permettono di applicare su di essi operazioni e funzioni.

Aspetto che rappresenta un grande salto evolutivo nello sviluppo delle società, dove le persone sono capaci di contare, dividere o sommare quantità, come l’aritmetica che era già utilizzata in epoca egizia e che nel tempo è aumentata di complessità. Tale è l’importanza dei numeri nella nostra vita che è stato stabilito che il loro studio è obbligatorio durante la fase formativa nel sistema educativo, occupando buona parte degli anni che lo studente impiega nel corso studi scelto. La complessità del campo dei numeri è stata tale che è diventata una materia di studio all’università, creando lauree specifiche a questo proposito, sia in matematica, sia nella sua applicazione in diversi campi come la statistica o l’economia, tra gli altri.

Nonostante quanto sopra, non tutti i processi matematici coinvolgeranno un processo linguistico, aspetto che è stato evidenziato grazie alla ricerca con persone con lesioni cerebrali o che mostrano altri problemi legati alla parola come nel caso dell’afasia, conservando intatte le abilità matematiche. Per quanto riguarda la lateralità delle funzioni, negli anni ‘80 è stata ripresa la prospettiva della dominanza emisferica, il che spiega un maggior sviluppo di uno degli emisferi, a scapito dell’altro, a causa delle esigenze sociali, quindi si ritiene che gli occidentali sviluppino maggiormente l’emisfero sinistro, privilegiando così il pensiero scientifico, matematico e logico a scapito dell’emisfero destro, trascurando l’educazione alla creatività e all’arte.

Attualmente è noto che l’emisfero sinistro è responsabile del riconoscimento di gruppi di lettere che formano parole e gruppi di parole che formano frasi, sia nella lingua parlata che scritta; è implicato anche nella numerazione, nella matematica e nella logica.

Per quanto riguarda l’elaborazione del linguaggio, ogni emisfero è specializzato in un aspetto diverso, quindi l’emisfero sinistro interviene nel riconoscimento dei modelli linguistici e matematici; mentre l’emisfero destro partecipa, in un certo grado, al livello di comprensione verbale.

Quando viene colpito è il lobo parietale, che è il centro delle informazioni sensibili, con un ruolo di primo piano nel linguaggio, si verifica la comparsa di discalculia (problemi con la matematica), dislessia (problemi con il linguaggio), afasia (problemi di pronuncia), aprassia (problemi di movimento), agnosia (problemi di riconoscimento); ma la matematica è molto di più che numeri e quantità, poiché implicano un’elaborazione di questi. Questa materia verrà insegnata dalle basi, aritmetica (proprietà dei numeri, calcolo numerico, operazioni numeriche), algebra (con variabili, equazioni, calcolo, ipotesi e previsioni, tutte basate sul linguaggio algebrico), geometria (o trigonometria euclidea, o analitica, legata alla fisica), probabilità e statistica (a fini sia descrittivi che predittivi) e calcolo differenziale e integrale (su fenomeni che cambiano nel tempo come nell’economia).

Il cervello è appositamente progettato per raccogliere e analizzare le informazioni esterne e interne, elaborarle ed emettere una risposta, iniziata dai sensi, grazie ai recettori che trasmettono le informazioni al cervello una volta superato il filtro attenzionale. Informazioni che vengono distribuite e analizzate separatamente per essere successivamente integrate e confrontate con tracce di memoria esistenti e quindi generare nuova conoscenza. Quindi l’informazione ricevuta deve essere “convertita” in percezione, per la quale richiede un certo livello di consapevolezza e attenzione, aspetto che funge da primo filtro per “ignorare” e “dimenticare” informazioni ridondanti e irrilevanti.

Nonostante quanto sopra, è stato possibile verificare come alcune sensazioni abbiano i propri meccanismi di attenzione, potendo parlare di attenzione visiva, attenzione uditiva…quindi, l’attenzione visiva comporterà movimenti di orientamento e ricerca di “fonti” di origine della stimolazione coinvolgendo la regione superiore e inferiore del lobo parietale, le aree visive frontali e subcorticali come il collicolo superiore, il nucleo pulvinare e il reticolare del talamo. Ma è stato verificato che per alcuni soggetti esistono anche meccanismi specializzati come nel caso dell’attenzione matematica, dove interviene il sistema parietale bilaterale posteriore-superiore, che consente l’orientamento spaziale e non spaziale nel sistema di rappresentazione mentale delle quantità. Pertanto, si può dire che il cervello è pronto a occuparsi della matematica e quindi ad avviare il processo di scomposizione e analisi di tali informazioni.

Diverse sono le teorie che hanno cercato di rendere conto del rapporto tra matematica e cervello, quindi dall’approssimazione dei quadranti cerebrali, dove si separa in base al rapporto tra la corteccia (sinistra e destra) e il sistema limbico (sinistra e destra) dando così origine ad un individuo con maggiore predominio di:

- Corticale destro, sarebbe più intuitivo, inclusivo, spaziale e fantasioso, optando per innovazione, creatività e ricerca.

- Corticale sinistro, sarebbe più logico, critico, analitico e realistico, optando per problem solving, matematica e finanza.

- Limbico destro, sarebbe più comunicativo, musicale, empatico ed espressivo, optando per il contatto umano, l’insegnamento e l’espressione orale e scritta.

- Limbico sinistro, sarebbe più sequenziale, dettagliato, amministratore e pianificatore, optando per amministrazione e gestione, essendo un buon oratore e lavoratore.

La persona predisposta alla matematica sarebbe quella che ha una dominanza corticale sinistra, che faciliterebbe questo lavoro, e consentirebbe un maggiore e migliore sviluppo professionale nelle aree legate ai numeri. Ma sebbene si sappia che queste dominazioni esistono, possono essere considerate parte dello sviluppo della cultura e della pratica, che, grazie alla neuroplasticità, renderà possibile che ci siano persone meglio preparate di altre per compiti matematici. Quindi se mettiamo due individui di fronte a un problema matematico, uno con laurea umanistica e un altro con laurea scientifica, ci si aspetterebbe che il secondo avesse una maggiore rete di connessioni neurali, che faciliterebbe il consumo di risorse, al momento di eseguire calcoli matematici, e quindi, alla fine, potrebbe dare la risposta corretta molto prima, nella risoluzione del problema posto, a differenza dell’altro, che ha percorsi e neuroni sviluppati per le lettere.

Si può quindi parlare di cervello matematico, o almeno di predisposizione alla matematica nel cervello per chi ci ha lavorato fin dall’infanzia, così come per altri ambiti in cui lo sviluppa, grazie alla didattica e all’istruzione che riceve fin da giovane e che accompagnerà gran parte dello studente che progressivamente aumenterà in difficoltà per le materie collegate alla matematica, sia quantitativamente che qualitativamente. Tutto ciò darà forma al pensiero matematico astratto, grossolano con capacità di memoria, lettura, attenzione, metacognitive e di autoregolazione, che consentiranno lo sviluppo di tutte le potenzialità in questo settore.

Ma le neuroscienze non solo ci dicono quando il cervello funziona in modo redditizio per quanto riguarda la matematica, ma anche quando sorgono problemi come nel caso dell’acalculia, identificata per la prima volta da Lewandowski e Stadelman nel 1908 che dà conto di alterazioni semantiche sulle quantità, deficit nella comprensione ed espressione dei numeri e problemi nei calcoli matematici. Quando l’acalculia è accompagnata anche da disorientamento destro-sinistro, agrafia e agnosia digitale, si parla di sindrome di Gerstmann, che influenza l’apprendimento della matematica di base (somma, sottrazione, moltiplicazione e divisione) e non tanto matematica avanzata quanto l’algebra, la trigonometria o la geometria, senza influenzare qualsiasi altra area del linguaggio.

Pertanto, le informazioni riguardanti la lesione neuronale ci consentono di conoscere quali aree del cervello sono coinvolte nella manipolazione del numero. Per quanto riguarda la sua rappresentazione, sono state stabilite tre tipologie: araba (1, 2, 3…), romana (I, II, III…); verbale (“uno” in italiano, “one” in inglese, “un” in francese…) o scritto (quarantacinque; 45…), e può anche essere astratto (collegato a grandezze) o adempiere ad una funzione nominale, riferendosi a ad una conoscenza enciclopedica (1492 data della scoperta dell’America da parte di Colombo). Aspetti strettamente correlati tra loro, quindi un numero scritto può rappresentare una quantità e a sua volta essere una conoscenza specifica, nonostante la loro apparente interconnessione, i pazienti con afasia, agrafia o alessia ci hanno permesso di capire come siano processi indipendenti, uno di essi può essere colpito, lasciando gli altri intatti.

Per quanto riguarda le basi neuronali, è stato dimostrato come la comprensione e l’espressione del numero in forma verbale si trova nell’area del linguaggio, nell’emisfero dominante, solitamente il sinistro, nel giro angolare. La rappresentazione dei numeri viene invece elaborata nella corteccia occipito-temporale ventrale media e nel giro fusiforme. Per quanto riguarda la rappresentazione astratta delle quantità, i solchi intraparietali sono coinvolti in modo biemisferico.

Seguendo il modello a triplo codice chiamato “neuro-funzionale” (Dehaene & Cognition, 1995), ci sono tre casi in cui i numeri vengono manipolati mentalmente. Quindi un input verbale attiva una rappresentazione verbale che è identificata dalle sue cifre o con una rappresentazione di quantità, quindi la parola “una dozzina” verrà tradotta come “una” + “dozzina”. Ma allo stesso modo la lettura di una cifra “1492” provocherà l’identificazione di cifre per poi trasformarla in una rappresentazione verbale ed enunciarla a parole attraverso un output, per il quale sono richieste due attività o conoscenze fondamentali:

- Manipolazione interna di quantità, che include sia comprensione numerica (di confronto, prossimità…) che aritmetica con elaborazione semantica (di sottrazione).

- Conoscenze numeriche lessicali non quantitative, riferite a date, eventi e altri dati enciclopedici.

Esiste una relazione di dipendenza funzionale tra la comprensione numerica ed il calcolo. Si può quindi affermare che oltre alla localizzazione di una struttura neuronale preposta all’elaborazione di stimoli legati al numero, esiste un’intera rete distribuita a livello neuronale dove sono ripartiti i diversi compiti che accompagneranno l’analisi della stimolazione, l’identificazione dello stimolo, l’assegnazione di valore e quantità e la sua manipolazione. Tutto questo prima ancora di poter pronunciare la parola corrispondente a quella cifra.

Ma se una struttura neuronale si è distinta nella gestione della matematica, quella è stata il solco intraparietale la cui morfologia (profondità e lunghezza) è stata correlata ai deficit nel processo di subitizzazione nei minori con sindrome di Turner e in quelli con discalculia, non risultando significativo con i compiti di conteggio o confronto di quantità. (Pérez et al., 2016)

Riferimenti

Alexiou, A., Mantzavinos, V. D., Greig, N. H., & Kamal, M. A. (2017). A Bayesian model for the prediction and early diagnosis of Alzheimer’s disease. Frontiers in Aging Neuroscience, 9(MAR). https://doi.org/10.3389/fnagi.2017.00077

Almira, J. M., & Aguilar Domingo, M. (2016). Neuromatemáticas : el lenguaje eléctrico del cerebro. Consejo Superior de Investigaciones Científicas.

Damasio, H. (2018). Phineas Gage: The brain and the behavior. Revue Neurologique, 174(10), 738–739. https://doi.org/10.1016/j.neurol.2018.09.005