Когда ок. 540 г. в кругу пифагорейцев пришли к заключению, что сущностью всех вещей является число, это был не просто «шаг вперед в развитии математики», но из глубин античной душевности на свет явилась совершенно новая математика, как самосознающая теория, после того как она уже с давних пор заявила о себе в метафизической постановке вопросов и формальных художественных тенденциях. Это была новая математика, подобно так и оставшейся незаписанной математике египетской культуры или получившей алгебраически-астрономическую форму математике культуры вавилонской с ее эклиптической системой координат: обе они некогда явились на свет в великий час истории и к тому времени уже давно угасли. Доведенная до завершения во II в. до Р. X. античная математика канула в небытие (несмотря на свое длящееся и поныне в нашем способе обозначений призрачное существование), чтобы в отдаленном будущем дать место арабской. То, что нам известно об александрийской математике, заставляет предположить в данной области значительные сдвиги, центр тяжести которых должен был всецело находиться в таких персидско-вавилонских высших школах, как Эдесса, Гондишапур и Ктесифон, в античную же языковую область проникали лишь частные моменты. Математики в Александрии были, несмотря на свои греческие имена (Зенодор, занимавшийся изопериметрическими фигурами, Серен, работавший над свойствами гармонического пучка лучей в пространстве, Гипсикл, введший халдейское разделение круга, и в первую очередь Диофант), вне всякого сомнения, исключительно арамеями, а их сочинения – лишь небольшой частью написанной преимущественно по-сирийски литературы[47]. Эта математика нашла завершение в арабско-исламских исследованиях и после долгого промежутка за ней последовала, вновь как всецело новое порождение новой почвы, западная, наша математика, в которой мы в нашем поразительном ослеплении усматриваем математику вообще, вершину и цель двухтысячелетнего развития, между тем как ей столь же строго отмерены ее теперь уже почти истекшие столетия.
То высказывание, что число представляет собой сущность всех чувственно воспринимаемых вещей, осталось самым ценным во всей античной математике. Через него число было определено в качестве меры. В этом кроется все мироощущение страстно обращенной к здесь и теперь души. Измерение в таком смысле означает измерять нечто близкое и телесное. Обратимся к высшему проявлению античного искусства – свободно стоящей скульптуре обнаженного человека: здесь имеется все существенное и значительное в бытии, весь ритм которого исчерпывающим образом задан поверхностями, мерами и чувственными отношениями. Пифагорейское понятие гармонии чисел – хотя, быть может, оно и выведено из музыки, не знавшей полифонии и гармонии и даже при разработке своих инструментов стремившейся к пастозному, чуть не телесному единичному тону, – представляется всецело предназначенным для этой скульптуры. Обработанный камень лишь тогда является чем-то, когда обладает взвешенными границами и отмеренной формой, как то, чем он стал под резцом художника. Без этого он есть хаос, нечто еще не воплощенное, а значит, пока еще ничто. Это ощущение, переведенное на больший масштаб, создает в качестве противоположности состоянию хаоса – состояние космоса, просветленное положение во внешнем мире античной души, гармонический порядок всех изящно ограниченных и чувственно данных единичных вещей. Сумма этих вещей уже и дает весь мир. Промежуток между ними, т. е. наше наполненное всем пафосом великого символа пространство, есть ничто, τὸ µὴ ὄν. Для античного человека протяжение означает телесность, для нас же – пространство, в качестве функций которого «являются» вещи. Оглядываясь отсюда назад, мы, быть может, разгадаем глубочайшее понятие античной метафизики, ἄπειρον Анаксимандра, которое не поддается переводу ни на какой из языков Запада: это есть то, у чего нет никакого «числа» в пифагорейском смысле, никакой измеренной величины и границы, а значит, никакой сущности; нечто безмерное, бесформенное, статуя, еще не вырубленная из глыбы. Это есть ἀρχή [«начало, принцип, власть» (греч.)], безграничное и бесформенное в смысле зрительном, что делается чем-то, а именно миром, лишь посредством границ, посредством чувственного обособления. Вот то, что в качестве формы a priori лежит в основе античного познания, телесность как таковая, и в Кантовой картине мира на ее место, точно ей соответствуя, является пространство, из которого Кант якобы был «способен отмыслить все вещи».
Теперь мы в состоянии понять, что отделяет одну математику от другой, и в первую очередь математику античную – от западной. По всему своему мироощущению зрелое античное мышление могло усматривать в математике лишь учение о соотношении величин, мер и форм материальных тел. Когда на основании этого ощущения Пифагор высказал решающую формулировку, то именно для него число было оптическим символом, не формой вообще или абстрактным отношением, но граничным знаком ставшего, поскольку это последнее выступает в чувственно обозримых частностях. Вся без исключения античность рассматривает числа в качестве единиц измерения, величин, отрезков, поверхностей. Другого вида протяжения она не в состоянии себе представить. Вся античная математика – это в конечном счете стереометрия. Говоря о треугольнике, Евклид, завершивший систему античной математики в III в., с внутренней необходимостью подразумевает лишь граничную поверхность тела: у него это никогда не будет система трех пересекающихся прямых или группа из трех точек в трехмерном пространстве. Он называет линию «длиной без ширины» (µκος ἀπλαῖές). В устах нашего современника такое определение имело бы жалкий вид. В пределах античной математики оно изумительно.
Также и западное число не возникло, как полагали Кант и даже сам Гельмгольц, из времени как априорной формы созерцания, но представляет собой, как порядок единообразных единств, нечто специфически пространственное. Реальное время{21}, как это будет выясняться со все большей очевидностью, не имеет с математическими предметами вовсе ничего общего. Числа относятся исключительно к сфере протяженного. Однако сколько существует культур, столько же и возможностей (а значит, и необходимостей) представлять себе протяженное в упорядоченном виде. Античное число – это мышление не пространственных отношений, но отграниченных для телесного глаза, доступных чувствам единиц. По этой причине – и это следует с необходимостью – античность знает лишь «натуральные» (положительные, целые) числа, которые играют ничем не примечательную роль среди множества в высшей степени абстрактных разновидностей чисел в западной математике – комплексных, гиперкомплексных, неархимедовых и прочих систем.
Поэтому также и представление иррационального числа, т. е. в нашей записи бесконечной десятичной дроби, осталось для греческого ума всецело неисполнимым. Евклид говорит (и его следовало бы понять получше), что несоизмеримые отрезки ведут себя «не как числа». В осуществленном понятии иррационального числа заключено полное отделение понятия числа от понятия величины как раз таки потому, что такое число, например число π, никогда не может быть представлено ограниченным или точно воспроизведенным отрезком. Однако из этого следует, что в представлении, например, отношения стороны квадрата к диагонали античное число, являющееся всецело чувственной границей, завершенной величиной, внезапно соприкасается с совершенно иной разновидностью числа, которая оставалась чуждой и потому жутковатой для наиболее глубинных основ античного мироощущения, – словно накануне открытия опасной для собственного существования тайны. Об этом можно судить по тому диковинному позднегреческому мифу, согласно которому человек, давший публике созерцать иррациональное, исторгнув его из области сокрытого, погиб в кораблекрушении, «потому что несказанное и лишенное образа всегда должно оставаться сокрытым». Кто способен ощутить тот страх, который лежит в основе этого мифа, – а он тот же самый, что всякий раз отпугивал греков самого зрелого периода от распространения своих крошечных городов-государств до политически организованных ландшафтов, от закладки просторной уличной сети и аллей с далекими видами и просчитанными завершениями, от вавилонской астрономии с ее безбрежными звездными пространствами и от выхода за пределы Средиземного моря по маршрутам, которые были уже давно открыты судами египтян и финикийцев; это глубокий метафизический страх распада чувственно постижимого и нынешнего, которым, как оборонительными стенами, окружила себя античность, позади чего дремлет нечто жуткое, бездна и первооснова этого, так сказать, искусственно созданного и утвержденного космоса, – кто постиг это чувство, постигнет также и окончательный смысл античного числа, меры в противоположность неизмеримому, как и возвышенную религиозную мораль в его ограничении. Гёте как естествоиспытателю это было прекрасно известно – отсюда его едва ли не пугливый протест против математики, который был на самом деле непроизвольно направлен (чего никто еще не понял) всецело против неантичной математики, против лежавшего в основе современного ему учения о природе исчисления бесконечно малых.
Античная религиозность со всевозрастающей акцентированностью собирается в чувственно определенных – привязанных к месту – культах, которые только и соответствовали «евклидовому» божеству. Абстрактные, парящие в не ведающих родины пространствах мышления догматы оставались ему извечно чужды. Такой вот культ и папский догмат относятся друг к другу так же, как статуя к органу в соборе. Несомненно, в евклидовой математике есть нечто культовое. Вспомним о тайном учении пифагорейцев и об учении о правильных многогранниках с его значением для эзотерики платоновского кружка. С другой стороны, этому соответствует глубинное родство анализа бесконечно малых у Декарта и современной ему догматики с ее продвижением от последних решений Реформации и Контрреформации к чистому, лишенному всех чувственных отношений деизму. Декарт и Паскаль были математиками и янсенистами. Лейбниц был математиком и пиетистом. Вольтер, Лагранж и Д’Аламбер – современники. Принцип иррационального, т. е. разрушения статуарного ряда целых чисел, этих представителей завершенного в самом себе мирового порядка, воспринимался, исходя из античной душевности, как кощунство в отношении самого божества. Это ощущение нельзя не заметить у Платона, в его «Тимее». В самом деле, с превращением дискретного числового ряда в континуум сомнительным становится не только понятие античного числа, но и самого античного мира. Теперь нам становится понятно, что в античной математике невозможны даже отрицательные числа, которые мы представляем себе без всякого затруднения, не говоря уже о нуле как числе – этом глубокомысленном порождении достойной всяческого удивления энергии обесплочивания, которое для индийской души, измыслившей его как основание позиционной системы цифр, является едва ли не ключом к смыслу бытия. Отрицательных величин не существует. Выражение –2 × –3 = +6 ненаглядно и не представляет величин. На +1 числовой ряд приходит к завершению. В графическом представлении отрицательных чисел (–3–2 –1 0 +1 +2 +3) отрезки, начиная с нуля, внезапно становятся положительными символами чего-то отрицательного. Они что-то значат, но их больше нет. Однако осуществление этого действия не соответствовало направлению античного числового мышления.
Так что все явившееся на свет из античного бодрствования оказывается возвышенным до ранга действительного лишь посредством скульптурной ограниченности. Что невозможно начертить, не является «числом». Платон, Архит и Евдокс говорят о плоских и телесных числах, подразумевая наши вторую и третью степень, и само собой разумеется, что понятия более высоких целочисленных степеней для них не существовало. Четвертая степень представилась бы грекам, исходя из скульптурного основополагающего чувства, которое тут же связывает с этим выражением четырехмерную, причем материальную протяженность, полной нелепицей. Такое выражение, как e—ix, постоянно встречающееся в наших формулах, или применявшееся Николаем Оресмом уже в XIV в. 5 1/2, показалось бы им совершенным абсурдом. Евклид называет сомножители произведения сторонами (πλευραί). Исследование целочисленного отношения двух отрезков производится с помощью вычислений с дробями – конечными, что понятно само собой. Как раз поэтому и не может появиться представление о числе нуль, потому что у него нет никакого графического смысла. Не надо только, исходя из обыкновений нашего иначе устроенного мышления, выдвигать здесь то возражение, что это-то как раз и были «начальные ступени» в развитии математики «вообще». В рамках того мира, который создал вокруг себя античный человек, античная математика являет собой нечто вполне завершенное. Не такова она лишь для нас. Вавилонская и индийская математика уже давно сделали важными частями своих числовых миров то, что было бессмыслицей для античного числового ощущения, и многие греческие философы об этом знали. Математика «вообще», скажем это еще раз, – иллюзия. Математическое и вообще научное мышление тогда является истинным, убедительным, «мысленно неизбежным», когда оно всецело соответствует собственному чувству жизни. В противном случае оно невозможно, ложно, бессмысленно, или, как предпочитаем мы выражаться с высокомерием исторических умов, «примитивно». Современная математика, этот шедевр западного гения (разумеется, «истинная» лишь для него), представилась бы Платону смехотворным и праздным заблуждением, приключившимся в ходе попытки приблизиться к истинной математике, а именно к математике античной. Вне всякого сомнения, мы не можем даже и представить, сколь многому из великих идей чуждых культур мы дали погибнуть, потому что были не способны, исходя из нашего собственного мышления и его пределов, их усвоить либо, что то же самое, потому что воспринимали их как ложные, излишние или бессмысленные.
6Античная математика как учение о наглядных величинах желает иметь дело исключительно с фактами чувственного и настоящего, и таким образом она ограничивает свои исследования, как и область своей применимости, примерами из сферы близкого и малого. Рядом с этой последовательностью в действиях в практическом поведении западной математики проступает нечто нелогичное, что, собственно, как следует признали лишь после открытия неевклидовых геометрий. Числа суть порождения отделенного от чувственного восприятия понимания, чистого мышления[48]. Свою абстрактную значимость они несут в себе самих. Напротив того, их точная применимость к действительности понимающего восприятия представляет собой особую проблему, причем такую, которая то и дело ставится вновь и никогда не получает удовлетворительного разрешения. Конгруэнтность математической системы с фактами повседневного опыта вовсе не разумеется сама собой. Несмотря на дилетантское предубеждение относительно непосредственной математической очевидности созерцания, как мы это находим у Шопенгауэра, евклидова геометрия, имеющая поверхностную тождественность с бытовой геометрией всех эпох, приблизительно согласуется с созерцанием лишь в очень узких пределах («на бумаге»). О том, как обстоит дело при больших отстояниях, говорит тот простой факт, что для нашего глаза параллельные на горизонте сходятся. На нем основана вся перспектива в живописи. Несмотря на это Кант, непростительным для западного мыслителя образом пасовавший перед «математикой дали», ссылается в виде примеров на фигуры, в которых как раз по причине их малости вовсе не может проявиться специфически западная, инфинитезимальная проблема пространства. Правда, Евклид также избегал того, чтобы для придания своей аксиоме наглядной убедительности сослаться, к примеру, на такой треугольник, углы которого помещаются в месте наблюдателя и на двух неподвижных звездах, ведь это не может быть ни вычерчено, ни «усмотрено», однако с точки зрения античного мыслителя это было правильно. Здесь о себе заявляло то же самое чувство, которое пугалось иррационального и не отваживалось на то, чтобы воспринять ничто как нуль, как число, а значит, чтобы сохранить символ меры, избегало неизмеримого также и в созерцании космических связей.
Аристарх Самосский, вращавшийся в 288–277 гг. в Александрии в кругу астрономов, несомненно поддерживавших связь с халдейско-персидскими школами и разработавший там ту гелиоцентрическую[49] систему мира, которая при ее повторном открытии Коперником затронула до самой глубины метафизическую страсть Запада (достаточно вспомнить Джордано Бруно), поскольку являлась исполнением колоссальных предчувствий и удостоверением того фаустовского, готического мироощущения, которое принесло жертву идее бесконечного пространства уже в архитектуре своих соборов, – этот самый Аристарх Самосский был воспринят античностью с полным безразличием и уже вскоре (можно было бы сказать – намеренно) забыт вновь. Круг его сторонников состоял из нескольких ученых, которые почти все происходили из Передней Азии. Самый известный его поборник Селевк (ок. 150) был из Селевкии на Тигре. В самом деле, для этой культуры Аристархова система не имела в душевном плане никакого значения. Она была скорее опасна ее мироощущению. И все же в отличие от системы Коперника (это решающее обстоятельство постоянно остается без внимания) благодаря той редакции, которая была ей придана, она точно соответствовала античному мироощущению. В качестве завершения космоса Аристарх принял всецело ограниченный телесно, пустой шар, который можно охватить оптическими средствами наблюдения, и в его середине находилась мыслившаяся по-коперникански планетная система. Античная астрономия всегда держала Землю и небесные тела за что-то принципиально разное, как бы ни воспринимались происходившие здесь движения в деталях. Подготовленная уже Николаем Кузанским и Леонардо идея, что Земля – лишь звезда в ряду прочих звезд[50], способна вписаться в Птолемееву систему ничуть не хуже, чем в коперниканскую. Однако с принятием концепции небесного шара был обойден угрожавший чувственно-античному понятию границы принцип бесконечного. Не возникает даже мысли о безграничном мировом пространстве, которая, казалось бы, неизбежна уже здесь, между тем как соответствующее представление далось вавилонскому мышлению еще давно. Наоборот. В своем знаменитом трактате «О числе песчинок» (как явствует уже из самого названия, это было опровержение инфинитезимальных тенденций, хотя его вновь и вновь рассматривают в качестве первого шага на пути к современным интегральным методам) Архимед доказывает, что если заполнить это стереометрическое тело – а ничем иным Аристархов космос не является – атомами (песчинками), это приведет к очень большим, но не бесконечным результатам. Однако это как раз и есть отрицание всего, что означает анализ для нас. Вселенная нашей физики представляет собой энергичнейшее отрицание всякой материальной ограниченности, как это доказывают неизменно терпящие крушение и тем не менее заново навязываемые уму гипотезы о материальном, т. е. мыслимом опосредованно созерцаемым мировом эфире. Евдокс, Аполлоний и Архимед, без сомнения наиболее изощренные и отважные математики античности, полностью осуществили чисто оптический анализ ставшего на основе скульптурно-античного граничного значения, прибегая главным образом к циркулю и линейке. Они пользуются продуманными и труднодоступными для нас методами интегрального исчисления, в которых проглядывает лишь видимое сходство с методом определенного интеграла Лейбница, и применяют геометрические места точек и координаты, представляющие собой исключительно именованные размерные числа и отрезки, а не, как это было у Ферма и прежде всего Декарта, неименованные пространственные отношения, значения точек по отношению к их положению в пространстве. Сюда относится в первую очередь метод исчерпания Архимеда[51] в его недавно открытом трактате, обращенном к Эратосфену, где он, например, обосновывает квадратуру сегмента параболы на исчислении вписанных прямых углов (больше уже не подобных многоугольников). Однако как раз остроумный, бесконечно запутанный способ, которым он, опираясь на некоторые геометрические идеи Платона, достигает результата, являет собой колоссальную противоположность этой интуиции и вроде бы на первый взгляд схожей интуиции Паскаля. Не существует (если всецело отвлечься от Риманова понятия интеграла) более резкой противоположности этому, чем то, с чем мы имеем дело в (к несчастью, называемых так и поныне) квадратурах, где «поверхность» дается как ограниченная функцией и уже даже речи нет о графических средствах. Нигде та и другая математика не подходит одна к другой так близко и нигде с большей отчетливостью не сказывается непреодолимый раскол между душами, выражениями которых они являются.
Чистые числа, сущность которых египтяне словно бы прятали, испытывая глубокую робость перед тайной, в кубическом стиле своей ранней архитектуры, являлись ключом к смыслу всего ставшего, косного, а значит, преходящего также и для греков. Каменное изваяние и научная система отрицают жизнь. Математическое число как формальный базовый принцип простирающегося мира, присутствующее здесь лишь исходя из человеческого бодрствования и только для него, особенностью каузальной необходимости связано со смертью, подобно тому как хронологическое число связано со становлением, с жизнью, с необходимостью судьбы. Эта связь строго математической формы с концом органического бытия, с появлением его неорганического остатка, трупа, все с большей отчетливостью выявляется в качестве источника всякого великого искусства. Развитие ранней орнаментики делается нам заметным уже на утвари и сосудах погребального культа. Числа – это символы преходящего. Косные формы отрицают жизнь. Формулы и законы распространяют по картине природы оцепенение. Числа умерщвляют. Это Матери «Фауста», царящие в величавом одиночестве «в лишенных образов мирах…
……. формированье, после измененье, Извечных смыслов вечное храненье. Вокруг всей твари образы кружат»{22}.В предчувствии окончательной тайны Гёте соприкасается здесь с Платоном. Матери, заповедное – платоновские идеи – знаменуют возможности душевности, ее нерожденные формы, которые воплотились в зримом мире, с глубочайшей необходимостью упорядоченном на основе идеи этой душевности, в виде деятельной и созданной культуры, искусства, идей, государства, религии. На этом основывается родство числового мышления данной культуры с ее идеей мира, связь, которая возвышает это мышление над простым знанием и познанием до значения мировоззрения и приводит к тому, что существует столько же математик – числовых миров, – сколько имеется высших культур. Это делает понятным и даже необходимым тот факт, что величайшие мыслители в области математики, эти подлинные художники в царстве чисел, пришли к пониманию решающих математических проблем своих культур с помощью глубоких религиозных интуиций. Так следует представлять себе создание античного, аполлонического числа Пифагором, основателем религии. Это же прачувство руководило Николаем Кузанским, великим епископом Бриксенским, когда ок. 1450 г. он, отталкиваясь от наблюдения бесконечности Бога в природе, открыл основные характерные особенности исчисления бесконечно малых. Лейбниц, окончательно установивший свои методы и обозначения двумя столетиями позже, сам на основе чисто метафизических наблюдений божественного принципа и его связей с бесконечными протяжениями развил идеи analysis situs [топология (лат.)], эту, быть может, гениальнейшую интерпретацию чистого пространства, освобожденного от всего чувственного, богатые возможности которой были развиты лишь в XIX в. Грассманом в его «Учении о протяженности» и прежде всего Риманом, подлинным его творцом, в его символике двусторонних поверхностей, представляющих свойства уравнений. Кеплер же и Ньютон, оба от природы до крайности религиозные, так и сохранили незыблемой свою, подобную Платоновой, убежденность в том, что именно посредством чисел им удалось интуитивно постигнуть сущность божественного миропорядка.
7Лишь Диофант, как приходится слышать вновь и вновь, освободил античную арифметику от ее привязанности к чувственному, расширил и повел дальше, алгебру же, как учение о неопределенных величинах, хотя и не создал, но представил на обозрение – внезапно, несомненно, как переработку уже имевшихся идей. Правда, то было не обогащение, но полнейшее преодоление античного мироощущения, и уже одно это должно было бы доказывать, что внутренне Диофант уже больше не принадлежал античной культуре. В нем деятельно сказывается новое ощущение числа или, скажем так, ощущение границы в отношении действительного, ставшего – уж больше не греческое, из чувственно-данных граничных значений которого явилась наряду с евклидовой геометрией осязаемых тел еще и пластика обнаженной скульптуры и деньги как монета. Нам неизвестны детали разработки этой новой математики. В «позднеантичной» математике Диофант стоит настолько особняком, что высказывались даже предположения о влиянии со стороны Индии. Однако вновь это окажется воздействием тех раннеарабских высших школ, чьи научные результаты, помимо догматических, исследованы пока еще так недостаточно. Под лежащим на поверхности намерением придерживаться Евклидова хода мыслей у Диофанта появляется новое чувство границы (я называю его магическим), вовсе не сознававшее своей противоположности тому античному представлению, к которому оно стремилось. Идея числа как величины оказывается не просто расширенной, но незаметно снятой. Что такое неопределенное число а и неименованное число 3 (оба они не являются ни величиной, ни мерой, ни отрезком) – на этот вопрос ни за что не мог бы ответить грек. Во всяком случае, в основании диофантовых наблюдений лежит новое, ставшее зримым в этих видах чисел ощущение границы. Само же применяемое у нас буквенное исчисление, в обличье которого сегодня предстает еще раз полностью переосмысленная алгебра, было введено Виета в 1591 г. вначале как ощутимая, но бессознательная оппозиция падкому на все античное счислению Возрождения.