Книга Магия чисел. Математическая мысль от Пифагора до наших дней - читать онлайн бесплатно, автор Эрик Темпл Белл. Cтраница 2
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Магия чисел. Математическая мысль от Пифагора до наших дней
Магия чисел. Математическая мысль от Пифагора до наших дней
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Магия чисел. Математическая мысль от Пифагора до наших дней

Проглядывая перечень трофеев, что мог сказать победитель о каждой из трех групп, что было бы справедливо для всех? Он, видимо, мог заметить, что все три состоят из живых существ. Возможно, так оно и было, но тогда он не придал этому особого значения, не отразив этот факт в списке. Как ни странно, он записал и обратил внимание на то, что все три группы живых трофеев (пленные, волы и козы) сопоставимы одним-единственным процессом. Все они могут быть посчитаны.

Если такой подход кажется слишком упрощенным, попробуем воспользоваться иными характеристиками, отличными от чисел, присущими каждой из групп, которые окажутся столь же важными и потенциально полезными. Требуемые характерные черты должны быть полностью независимыми от происхождения единиц учета, объединяемых в несколько групп. Возможно, задача представляется слишком легкой: описать проблему в полном объеме. Подумаешь, несколько множеств материальных предметов, имеющих что-то общее? Каждое множество может быть посчитано. Более того, и победитель об этом, скорее всего, знал; для конечного итога нет разницы, в каком порядке трофеи оказались подсчитаны, не важно, велся ли подсчет одного за другим, семерками, десятками, в любом случае результат был бы одинаков. Маги победителя сумели бы даже убедить своего господина, что один жезл легко превратить в два. Но им никак не удалось показать 1 422 001 козу, если по подсчетам их было только 1 422 000.

Кажущаяся простота подсчета скрывает суть вещей, что делает ее полезной и по-философски гипнотической. Если всему дать имена, то можно говорить об универсальности и неизменности чисел, порожденных счетом. Универсальность всегда права и всегда значима, она давно стала желанной для многих философских течений. Неизменность или отсутствие изменений посреди перемен отвечает запросам не одной религии и даже в наш век позволяет кодифицировать законы в области физических наук. Для примера из повседневной жизни: скажем, встретились пять человек, а потом расстались. Что бы они ни делали, как бы их ни разбросало по земле, сколь ни различны оказались бы их судьбы, число пять (результат подсчета) остается без изменений. Оно не зависит ни от космических катаклизмов, ни от времени. Более того, все то же число пять будет обозначать любые единицы учета в любом множестве из пяти предметов, какими бы они ни были.

Обыденные для нас универсальность и неизменность чисел оставались на протяжении многих веков за пределами воображения управляющих, пересчитывающих трофеи. Числа были полезны им, и это, пожалуй, все, что им требовалось знать для собственного выживания и процветания. Корни счета уходили далеко назад в прежние времена, а их собственная цивилизация так продвинулась вперед, что, по-видимому, им никогда не приходило в голову поинтересоваться, что есть число, или поразмышлять, как человечеству выпал случай изобрести числа. Все эти метания человеческой души продлятся многие тысячи лет. Даже любознательные греки не уточняли, что есть числа, хотя Пифагор и его последователи время от времени говорили о них как о живых существах.

Другой вопрос, кто придумал числа, возможно, неправильно сформулирован. Представляется, что числа никогда не были сознательно изобретены одним человеком или группой людей, они скорее эволюционировали в течение нескольких непримечательных этапов, наподобие того, как (полагают некоторые) возник язык, который появился из нечленораздельных криков. Где-то, как-то люди могли приобрести привычку использования чисел, не придавая этому особого значения. Тем не менее числа 1, 2, 3… демонстрируют некоторые признаки внезапного озарения и осознанного изобретения. И наиболее существенные из них снова связаны с универсальностью и неизменностью чисел. Пусть никто не знает, было ли так на самом деле, но заманчиво предположить, что некий безвестный гений абсолютно неожиданно для себя осознал, что мужчина и женщина, камень и рогатка, сон и закат и практически любая пара любых предметов, живых существ или явлений одинаковы в одном, и только в одном. В своей «парности». От этого откровения до постижения непосредственно числа «два» гигантский шаг, но какой-то человек сделал этот шаг за много веков до фараона, пересчитавшего трофеи.

Как бы ни казалось это слишком легко, примем число «два» как общеизвестный факт, каковым он, по-видимому, и является, и зададим вопрос, чем число два, рассматриваемое в качестве числа вне зависимости от его употребления, «действительно является». Короче, нам предстоит дать числу два определение, приемлемое по меньшей мере для некоторых (но не всех) математиков ХХ века. Такое же определение следует дать любому натуральному числу.

Это не так просто. Между подсчетом 1 422 000 коз и разумным и достаточным определением числа два имеет место разрыв примерно в 5500 лет, в течение которых ни математики, ни логики не в состоянии убедить, что по существу есть число два. Руководствуясь принципом, что конечность – последнее, чего жаждут математики получить от математики, просто ограничимся дефиницией. Число два является классом тех вещей, которые отличаются парностью, то есть которые можно составить в пару (один и один) с другими составляющими пару. Понятие «класс» следует воспринимать интуитивно как аксиому, не требующую доказательств. Видимое зацикливание понятий «два» и «пара» чисто случайное и может не рассматриваться. Следовательно, натуральное число «два» есть класс, и подобным образом любое натуральное число является классом.

Не предпринимая попыток провести анализ этой достаточно сложной для понимания дефиниции, заметим, что (когда она изучена и понята) в ней нашло отражение то, что ускользнуло от первого человека, установившего, что все эти множества – муж и жена, исток и смерть, птица и гроза – имеют в общем только собственную двойственность. Это наблюдение, кто бы ни оказался его автором, заложило основы арифметики. Оно же стало секретным источником всех видов магии чисел, проникшей в античную философию, средневековый мистицизм чисел и современную науку.

Мы рассмотрели один из возможных источников происхождения чисел. Предположив, что числа были изобретены, мы совершили большое, но не преднамеренное насилие в отношении более чем одной уважаемой теории чисел, включая теорию Платона, и подорвали верования многих выдающихся математиков XIX и XX веков. Исторически наиболее широкое распространение получила другая альтернатива. Если числа не были изобретены человеком, они могли быть (не обязательно «должны быть») открыты. Здесь проходит граница, где заканчиваются знания и начинаются предположения.

Отдельные математики уверены, что числа были изобретены людьми. Иные, не менее компетентные, уверены, что числа независимы и существуют сами по себе, а отдельные смертные, достаточно образованные, просто следуют этим представлениям.

Различие между двумя теориями далеко не тривиально. Обе, возможно, не имеют смысла. Однако вполне вероятно, что неправильно сформулирован сам вопрос: «Были ли числа изобретены или открыты?» И нашим потомкам он покажется столь же лишенным смысла, как вопрос: «Честность голубого цвета или треугольная?» Но в настоящее время (пока еще не вмешались психологи) вопрос о числах кажется нам вполне логичным, как и ряд других вопросов, ответ на которые может быть однозначен. Например: «Америка была открыта в 1492 году или тогда ее изобрели?» Или: «Уатт изобрел паровой двигатель или открыл его?»

Даже поверхностно эти четыре выбранных для примера вопроса абсолютно разноплановые. Хотя тот, что о честности, с точки зрения грамматики производит впечатление разумного, а на практике является просто набором лишенных смысла слов. На вопрос об Америке можно ответить быстро, если только он не обсуждается в метафизическом обществе с применением признанных методов оценки исторической очевидности. Вопрос об Уатте и паровом двигателе мог бы быть урегулирован тем же способом. Но какой-нибудь глубокомысленный философ заметил бы, что неизменная структура физического мира и строение человеческого разума лишь требовали создания парового двигателя раньше или позже согласно исторической предопределенности постепенного открытия.

Не утруждая себя формированием позиции, признаем, что в этом случае Уатт может выступить в роли отчасти изобретателя и отчасти открывателя. Вполне допустимо даже найти какой-то смысл в утверждении, что сам паровой двигатель ожидал своего открытия за много лет до того, как возникла Солнечная система. Уатт в этом случае оказался бы только наблюдателем уже существующего.

Вопрос о числах – были ли они открыты или придуманы – нельзя представить способом, приемлемым в случае с вопросом об Америке. Какой ответ мы предпочтем, по большей части определяется на уровне наших эмоций. Ясно, что на вопрос нельзя дать ответ никаким объективным или документарным исследованием, но все-таки он явно не лишен смысла. В этом плане он напоминает несколько других коренных вопросов, касающихся отношения человека к вселенной, над которыми бьются многие века философы, теологи и ученые. Те, кто заявит, что числа были открыты, может согласиться, что человек – лучшее творение Бога. А те, кто склоняется к мнению о человеческом участии в происхождении чисел, скорее склонен категорично утверждать, что человек, без всякого сомнения, сам создал своих богов в собственном воображении.

Нет необходимости занимать ту или иную сторону в этой веками длящейся борьбе мнений. В данной книге постараемся рассмотреть только фазы этой борьбы, уходящей в глубь веков, и уяснить, насколько глубоко вера людей в реальность чисел по Платону (утверждавшему, что числа существуют в качестве сверхчеловеческих «структур» вне человеческой доступности) оказала влияние на взгляды ученых в других областях знания, очень далеких от математики, а возможно, и более важных для человечества. Есть или нет ответ на вопрос: «Были числа изобретены или они были открыты?», есть ли смысл в вопросе, или он неправильно сформулирован, самое существование данного вопроса на развитие рационального мышления имеет большее значение, чем если бы однажды на него дали ответ. Эмоциональные и рациональные попытки дать ответ продолжают порождать как минимум противостояние, если нет ничего более путного. Вопрос остается старейшим и наиболее простым из всех вопросов, касающихся природы математических истин. История так и не дает универсального и приемлемого ответа на него. Остается надежда на науку.

Вместо попыток выяснить происхождение чисел посредством гипотетических реконструкций истории нашей расы, психологи отправились к той же цели через реконструкцию поведения индивидуума на ранней стадии развития. Счетом будущий арифметик начинает заниматься, когда, будучи маленьким ребенком, впервые вылезает из колыбели и плюхается на стульчик. Впервые в своей жизни он тогда осознает «не-я». «Я» и «не-я» – это уже матрица любого множества. Окажется не так уж и странно разглядеть в этом сокрушительном узнавании враждебного «не-я» подсознательное начало бедствия, связанного с числом два, всеми, кто владел знанием о мистике чисел от древних пифагорейцев до теологов-нумерологов Средних веков. Два, «диада», «не-1» неизменно являют собой нестабильность и что-то плохое, реально вводящее в заблуждение, подобно двухдолларовой банкноте. Живший в XIII веке знаток чисел Данте, например, доказывал необходимость «объЕДИНения» империи, поскольку «пребывание в единице» является дорогой к «пребыванию в благости», а «пребывание во множестве» – дорогой к «пребыванию в несчастье». Именно по этой причине Пифагор ставил «один» на сторону добра, а «много» – на сторону зла. Данте следовало бы добавить, что Платон продолжал Пифагора в этом вопросе и что каждый из них, скорее всего, испытывал давление неосознанных воспоминаний раннего детства. Если только будущий мистик чисел не окажется от рождения солипсистом, он достаточно рано познает, что не является всемогущей и всезнающей Единицей, или Божественной Монадой. Дальнейшие примеры – со столами вместо стульев – могли бы породить ощущение «не-стула». Любящие родители маленького ребенка и не слишком любящая его домашняя кошка внушают дальнейшие различия в отношениях этому неопытному и легкоранимому сознанию. Но если ребенку не суждено стать великим философом математики, он вряд ли интуитивно почувствует, что его родители и кошка делят между собой нечто универсальное, состоящее из трех неодушевленных предметов, таких как два стула и стол. В действительности он, возможно, никогда не откроет (или изобретет) «3, 4, 5…» самостоятельно, но тогда его научат этому родители. От кого его родители узнали числа? От своих родителей. И так далее, назад к дикарям.

В этой точке психоанализ чисел утрачивает былую уверенность в себе. У кого учился дикарь? Его родители остановились на «шести». Неужели гений из племени изобрел семь, которым пользовался, чтобы сосчитать стрелы отца, неспособного пересчитать их самостоятельно? Или семь ожидало, когда же его вытянут из царства вечного бытия? И останется ли это число тогда, когда человеческая раса исчезнет, всегда готовое быть открытым какими-то будущими представителями разумного мира? Сколько чисел созданы человеческим разумом или поведением и сколько существовали самостоятельно и были открыты? Практичному человеку будет мало толку, если он заявит, что только метафизик может задавать подобные вопросы. Историческая правда гласит, что бесчисленные множества непрактичных людей не только задавали эти вопросы, но и бились веками над ответами на них, и только благодаря их победам и поражениям практичный человек имеет очень много в своей повседневной жизни, несмотря на явную непочтительность ко всем метафизикам.

И, как обычно при подобных вопросах, желанным ответом становится неокончательный компромисс. Опыт учил дикаря, что числу можно доверять, если надо различить объекты, нравится это тебе или нет. Когда он осознал разницу между одной вещью и множеством, дикарь был вынужден (кем или чем?) пойти дальше от «трех» вещей к «четырем», и так далее до тех пор, пока не отпала надобность. Только на более поздней стадии, когда образование стало системой, появились действительно надежные общие теории чисел. На какой-то промежуточной стадии такие арифметические правила, как 4 = 2 + 2, 4 = 1 + 1 + 1 + 1, получили признание, пусть даже и на уровне интуиции. Любая теория чисел, противоречащая этим постулатам арифметики, как известно, будет отвергнута, как непригодная к употреблению.

Хотя основные вопросы оставлены без ответа, этот компромисс преследует двойное преимущество сохранения обеих дверей открытыми: одна – в натурализм, другая – в супернатурализм. После первого шага колебания больше неуместны. Множества мистиков, философов и математиков, избравших вторую дверь, придерживаются теории чисел как продукта творца. Отдельные представители наделяют числа силой, перед которой склоняются даже боги. Те же, кто предпочел путь натурализма, не находят в них ничего сверхчеловеческого. Но их негативные высказывания были широко проигнорированы, а сами они не достигли высот популярности. Несколько независимых ученых, отказавшихся войти в какую-либо дверь и продолжавших думать самостоятельно, остались практически без поддержки.

Следующий значительный исторический эпизод после жезла фараона в 3500 году до н. э. имел место в Вавилоне, пятнадцать веков спустя.

Глава 3

Во благо их самих

Древних египтян числа интересовали только с точки зрения практического применения как в различные периоды, так и на закате их цивилизации. Поэтому арифметика в Древнем Египте практически не развивалась, приобретая около 1700 года до н. э. странную неуклюжую форму. Примерно в это же время завершилось возведение Стонхенджа. В этом нет ничего странного. Любознательность в отношении чисел как таковых и проявление интереса к темам, не приносящим сиюминутного результата, были необходимы для развития математики, а затем астрономии и физики, а с ними – и технологии.

Даже в античные времена параллельно с прогрессом так называемой чистой математики невероятно возросла и значимость расчетов. Практические проблемы, которые египтяне за 1700 лет до н. э. решали в первом грубом приближении, спустя четырнадцать веков были почти полностью урегулированы на любом требуемом уровне точности греческими методами. Например, количество зерна, которое могло бы попасть на хранение в египетское зернохранилище, узкое как современная силосная яма, подсчитывалось по затратному неточному варианту, основанному на методе проб и ошибок. Греческий подход, базировавшийся на чистой геометрии, позволял определить количество до пригоршни.

Общепризнано, что греки намного опередили свое время и им отдавали пальму первенства в развитии науки о числах и будущих прикладных направлений. В результате детального прочтения дюжин вавилонских глиняных табличек стало очевидно, что у греков были предшественники в гонке за бесполезным на тот момент знанием. Для целей данного исследования важно только одно положение из всех замечательных открытий, сделанных арифметиками из долины Евфрата, пока греческие племена странствовали по Малой Азии как полуцивилизованные кочевники. Но будет интересно бросить хоть мимолетный взгляд на вклад вавилонян в создание (или открытие?) математики.

Возможно, наиболее примечательным является полное забвение лучших из их достижений, которые оказались стертыми из памяти человечества не меньше чем на тридцать пять веков. Безусловно, греки явно упустили из виду достижения вавилонян в арифметике и алгебре, в противном случае их собственная рудиментарная алгебра, замаскированная под элементарную чистую геометрию, оказалась бы менее неуклюжей. За исключением нумерологии, ранние греки не преуспели ни в теории, ни в практике чисел.

Толчок к первоначальному развитию арифметики у вавилонян дали шумеры. Шумеры – высокоодаренный не-семитского происхождения народ, проживавший на плодородных землях в северной части Персидского залива. К числу других выдающихся вкладов в развитие цивилизации следует отнести шумерское силлабо-идеографическое письмо, которое впоследствии трансформировалось в клинообразное письмо вавилонян. Нечто похожее имело место и в плане сохранения и передачи арифметики. Около 2500 лет до н. э. шумерские купцы уже были знакомы с применением арифметики при взвешивании и измерении, начислении процентов по займам и оформлении документов на то, что сейчас мы бы назвали краткосрочными коммерческими кредитами. Эффективное использование ими чисел позволяет предположить длительную предысторию развития, возможно тысячелетнюю. Около 2000 лет до н. э. шумеры были ассимилированы семитами-вавилонянами, и наступила золотая эра вавилонской математики. Она продолжалась целых восемь веков.

Счет вавилонян базировался на шестидесятеричной системе исчисления (шестью десятками) с легкой примесью десятичного счета (десятками). Базовые 60 выжили в нашем отсчете времени, как и в наших градусах, минутах и секундах при измерении углов. Как целые числа, так и шестидесятеричные дроби были представлены в клинописном виде в системе исчисления по разрядам (на базе 60), в значительной степени, как записываются наши собственные числа и десятичные дроби (на базе 10) простыми символами 0, 1, 2… 9. В один прекрасный момент, неизвестно когда, но, скорее всего, в конце наивысшей стадии расцвета цивилизации, появился символ, соответствующий нашему нулю. Уже одно это стало прорывом первостепенной важности.

И хотя это представляет куда больший интерес для истории математики, чем для более узких целей данного исследования, мы можем бегло отметить, что развитие арифметики вполне естественно вело к открытию правил квадратных, кубических и биквадратных уравнений. Пусть вавилонские специалисты по алгебре не умели полностью и свободно решать произвольные уравнения, как это делают сегодня в алгебре для высшей школы, но они достигли значимого успеха. Отдельные историки математики ставят вавилонскую алгебру 2000–1200 годов до н. э. выше всего, созданного до XVI века н. э. Достижения в области геометрии и измерений просто поражают. Хотя результаты по большей части отличаются корректностью, следов доказательств не обнаружено. Отсутствие доказательств вызывает интерес с позиций исторического развития интеллекта и философии.

Одна, внешне незначительная, но в историческом плане очень важная деталь в арифметике вавилонян всплывает при приближении к временам Платона. Большие числа, и в частности одно число, видимо, привлекали их внимание. Число, о котором идет речь, – это 12 960 000, или четвертая степень числа 60 (60 × 60 × 60 × 60). В шестидесятеричной системе это число соответствовало бы десяти тысячам (четвертой степени базового числа), наши десять тысяч есть 10 000 (10 × 10 × 10 × 10). Их число могло использоваться, как греки использовали по случаю наше, дабы подчеркнуть невероятно огромное число. Но использование Платоном вавилонских «десяти тысяч», как будет продемонстрировано позднее, было несравненно более окрашено богатым воображением.

Одним из источников всего таинственного, что шло от этого числа для магов и им подобных, являлось количество его делителей. Включая 1 и само число, вавилонские «десять тысяч» (12 960 000) имеют 225 делителей, наши же десять тысяч (10 000) насчитывают жалкие 25. Если для метафизиков этого намека на вечно воскресающую вселенную недостаточно, стоит всего лишь обратить внимание, что 225 (общее число делителей 60 в четвертой степени) есть 9 × 25, а 9 – это 3 раза по вездесущей и святой во все времена 3. Если и этого недостаточно, заметим, что четвертая степень от 6 (6 × 6 × 6 × 6, или 1296) имеет то же самое число делителей (25), как и четвертая степень 10. При этом четвертая степень от 10 есть десять тысяч у греков и у нас с вами, в то время как 12 960 000 есть «десять тысяч» у вавилонян, что составляет четвертую степень от 6, умноженную на четвертую степень от 10. Разве не должна ощутимая космическая истина скрываться в подобной таинственной гармонии чисел? Скрывается она или нет, но пространные философские рассуждения о человеке и вселенной выводились из перетасовки чисел совсем не столь плодовитых, сколь приведенные выше. Будет забавно теперь внимательнее посмотреть на всю их абсолютно бесполезную чепуху.

Во времена колонизации Америки да и еще какое-то время в XIX веке школьники выпускных классов по арифметике бились над следующей головоломкой. «Земельное владение общей площадью 1000 квадратных футов состоит из двух участков. Две трети длины стороны одного квадратного участка больше в 10 раз длины стороны другого квадратного участка. Рассчитайте стороны участков». Алгебра дает два ответа: стороны участков равны 10 и 30 футам, или – 270/13 и – 310/13 фута. Арифметика разумно останавливается только на первом варианте.

Неоправданно забытая американская классика «счета в уме» впадала в ярость от этих ужасов. Отважные парни, кому удалось решить данные задачи в уме (они могли получить только первый вариант ответа, второй – просто бессмысленный вздор), видимо, проходили школу более сурового воспитания, чем мертвенно-бледные неженки, которые позднее изводили уйму карандашей и бумаги и переворачивали учебники алгебры в поисках обоих ответов. Существовали более несносные задачи, чем приведенный пример, вроде задачки о сбежавшем военнопленном, имевшем с собой запас еды и питья только на два дня, которому предстояло пересечь безводную пустыню шириною сто миль бросками по десять миль в день. Но какими бы разными ни казались задачи, все они имели четыре общие черты. Они могли быть решены простыми арифметическими действиями любым, кто довольно прилично разбирался в школьной арифметике. Много легче они решались теми, кто обладал лишь весьма скромными знаниями в элементарной алгебре, и они были замысловато надуманны и лишены всякого практического смысла, и они нравились ученикам выше среднего уровня.

Две последние группы представляют для нас интерес. В современной прогрессивной школе арифметические задачи переведены в разумно практическую плоскость, часто представляя собой (причем с картинками) интересные и важные события из жизни совета местной школы, центрального вокзала Нью-Йорка, деятельности отцов города. Их легко решить в уме практически всем. К некоторому недоумению отдельных преподавателей, около 10 процентов среднестатистического класса не любят эти специальные практические задачи и даже от случая к случаю шумно выражают протесты, требуя других задач, которые заставляют нормального мальчика или девочку задумываться. Опыт древних вавилонян, кажется, свидетельствует о том же.

К 2000 году до н. э., а возможно, даже ранее 2500 года до н. э. вавилоняне довели уровень арифметических знаний до состояния вполне достаточного, чтобы осуществлять контроль за деятельностью в торговле, земледелии, строительстве, рытье каналов, астрологии и астрономии. Затем они ушли в чистую математику, выдвигая и решая бесчисленные задачи, которые даже самый беспечный историк экономики с трудом решится определить их значение. Задача об участке земли – лишь умеренный пример того, чем они занимались в указанном направлении. Она взята из математических табличек примерно 2000 года до н. э. Любого землемера даже на миг не сможет обмануть ее мнимая практичность. Если бы кому-то понадобилось узнать длину сторон участка, он не стал бы делать тех измерений, которые описаны в задаче, если он не сумасшедший и не сверхъестественно глуп. Задача столь же искусственна, как анаграмма, и единственно возможная ее цель состоит в том, чтобы получить удовлетворение от тренировки мозгов.