Книга Магия чисел. Математическая мысль от Пифагора до наших дней - читать онлайн бесплатно, автор Эрик Темпл Белл. Cтраница 3
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Магия чисел. Математическая мысль от Пифагора до наших дней
Магия чисел. Математическая мысль от Пифагора до наших дней
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Магия чисел. Математическая мысль от Пифагора до наших дней

Математик из Вавилона, сформулировавший и решивший эту задачу, позволил себе использовать алгебру. Практически до последнего шага он следовал точно тому методу, что и большинство учеников начального курса алгебры в наши дни. Поскольку отрицательные числа еще не были полностью изучены, он пропустил второй ответ и дал только первый. Второй ответ сильно озадачил бы математика, будь он хоть на шаг впереди своего времени. Как выглядит отрицательная длина? Многие из тех, кто приступал к изучению алгебры, задавали этот вопрос только затем, чтобы убедиться, что, поскольку числа не могут лгать, они всегда имеют смысл, если с ними правильно обращаться. По этой причине отрицательная длина должна быть отвергнута.

Только после того, как непредубежденные люди перестали отметать неудобное и предприняли попытку понять, что же они делают с числами (или что числа делают с ними?), арифметика начала свободно и в полном объеме развиваться. Но это не происходило в течение многих веков после исчезновения вавилонян в тысячах тонн рассыпавшихся кирпичей и «сиянье Греции святой», пока не пришла пора ее математике дозреть, чтобы оказаться вновь открытой пробудившимися европейцами. Даже после этого потребовались века, прежде чем с отрицательными числами научились работать с должной уверенностью, ведь полное понимание пришло лишь в XIX веке. Но главный вопрос философии продолжал оставаться без ответа: «Были негативные числа изобретены или на них просто наткнулись?»

Хотя специалист по алгебре в Древнем Вавилоне нашел разумный ответ на свою же задачу, он продемонстрировал всем, имеющим зрение, куда надо смотреть, чтобы увидеть нечто важное (что могло бы оказаться безмерно важнее пропавшего ответа) для будущего науки, математики и философии. Своей задачей он показал, что числа прекрасны сами по себе и вознаграждают тех, кто изучает их ради них самих. Любознательность может «устать», если путь слишком длинен, но без нее мало что достигается в практическом плане. В этом суть учения древнегреческих математиков и ученых. Честь научить этому мир им следует разделить с вавилонянами.

Глава 4

Век глобальных решений

XVII век эры христианства имел много оснований для получения титула «великого века» современной науки и математики. В это время Галилей (1564–1642) и Ньютон (1642–1727) впервые в полном объеме продемонстрировали современный научный метод, объединяющий в себе математику с наблюдениями и экспериментами. Никто не верил (чем грешат отдельные теоретики-естествоиспытатели в ХХ веке), будто чистый разум – математика способна явить миру все фундаментальные законы развития физической вселенной.

Не верящим в магию чисел кажется невероятным, чтобы без использования метода Галилея – Ньютона в познании материального мира вообще могла совершиться промышленная революция конца XVIII – начала XIX века. История перестройки жизни людей, вызванной применением научных достижений в практической жизни, слишком хорошо известна, чтобы нуждаться в очередном пересказе. Упоминание о ней необходимо, чтобы адекватно сравнить революционный прогресс в развитии цивилизации в ином великом веке – VI веке до н. э.

В том веке два грека – Фалес и Пифагор – первые в плеяде бессмертных в области точных наук определенно встали на путь развития науки и математики, что позднее сделало возможным появление работ Галилея и Ньютона. Этот век также стал знаменательным тем, что заложил основы западной цивилизации. Если поворотные моменты в истории больше чем плод изобретательности историков, то VI век до н. э. из их числа. В VI веке до н. э. научная, математическая и религиозная мысли избрали новое направление, взяв курс в сторону от авторитета многовековых традиций к прямому изучению природы и человеческих стремлений. После Фалеса и Пифагора уже не было обязательным беспокоить богов через посредничество священников. Разумная мысль о материальном мире и месте человека в нем пробивала себе дорогу бок о бок с примитивными суевериями, возможно как никогда ранее. Но даже у самых отважных не получалось за свою короткую жизнь полностью отбросить груз прошлого. Самый бесстрашный из них, Пифагор оставил в наследство грядущим поколениям вечное смятение разума, передав им магию чисел Востока вместе со своим эпохальным вкладом в научный эксперимент и математику.

Прежде чем приступить к рассмотрению влияния чисел на образ мысли Пифагора и его последователей от прошлого к настоящему, было бы интересно узнать об интеллектуальном климате, в котором процветали он и его ближайший предшественник Фалес. Они не были одиноки, когда меняли направление человеческой мысли.

Где-то за три века до рождения Фалеса (624?—546 до н. э.) и Пифагора (569?—500?) Гомер (около IX века до н. э.) показал простым грекам их бессмертных богов во всех отношениях похожими на людей, и эти образы обрели славу, признание на тысячи лет. Помимо двух неувядающих шедевров мировой эпической поэзии, он не оставил незаурядным людям ничего. Вмешивающиеся не в свои дела боги и богини Гомера оказались настолько нелепы в то время, когда Фалес доказывал первые теоремы в геометрии, насколько сражающиеся ангелы Милтона, когда Ньютон применил дифференциальные уравнения к механике небесных тел.

Ко времени появления Фалеса для тех, кто несколько утомился от мифологии, уже существовало нечто более значительное, чем гомеровский идеал отца богов и всего человечества в виде похотливого старого деспота. Иранский проповедник Заратустра провозгласил более цивилизованную концепцию религии, в которой этические нормы возвеличивались до уровня сверхъестественного. Скорее всего, и Пифагор тоже испытал на себе влияние этого течения религиозной мысли, поскольку его собственные наставления, за исключением тех, что появились под прямым воздействием восточных фантазий или числового абсурда, были свободны от суеверий.

Длительная война между многобожием и единобожием была в самом разгаре, когда Фалес заложил основы своей геометрии. За век до его рождения знаменитая четверка еврейских пророков – Амос, Осия, Миха, Исайя, – чьи слова запечатлены в Ветхом Завете, настаивали, чтобы израильтяне и другие народы отказались от многобожия в пользу единобожия. Пятикнижие к тому времени, вероятно, тоже было завершено. Оно снабдило израильтян священной историей и строгими моральными заповедями, которые веками почитали и которым следовали ортодоксы. Эти заповеди и по сей день оказывают влияние на жизнь верующих христиан.

Традиционно Фалеса представляют неутомимым путешественником. Нас же интересуют знаменитые события, имевшие место без его участия и о которых он, возможно, знал только по слухам. В то время как он пропадал по своим делам в Египте, Вавилонии или где-то еще, триада израильских пророков решительно и тщательно продвигала бережно оберегаемое царство Иеговы на земле. Софония возвращал в строй Иуду различными предостережениями и угрозами. Наум объявил, что недавняя гибель Ниневии была делом рук Иеговы, в то время как Аввакум продолжал духовный спор с Иеговой по поводу притеснения верующих. Далеко не все из перечисленных вопросов столь же актуальны сегодня, как это было в период путешествия Фалеса по Малой Азии, когда он собирал семена, которым почти через два с половиной века предстоит расцвести как минимум в трансцендентальной арифметике Платона с его идеальными числами. Но все же эти события значительно повлияли на развитие религии, которой в конечном счете отдали предпочтение европейцы. Соответственно математические, научные, философские и религиозные идеи, управлявшие западной цивилизацией, изначально были сформулированы в VI веке до н. э.

Частично и азиатская культура тоже выросла на фундаменте, заложенном в тот изумительный век. Конфуций открыл китайцам одну философию жизни, а Лао-цзы – другую, которая дошла до наших дней под названием даосизм. Индийцами были приняты буддизм и джайнизм в учениях Гаутамы и Махавиры.

Ни китайцы, ни индийцы к тому времени не внесли сколь-либо значимого вклада в науку о числах. Одна причуда индийского числа лор тем не менее действительно привлекла метафизические искания ранних греков. Индийцы нашли пользу в больших числах, особенно в пантеонах и своей мистической хронологии. Подобно египтянам, они перешагнули недостаток примитивных чисел, чтобы считать по-крупному. Еще бы приложить усилия, и они могли бы познать бесконечно великое.

Дабы завершить перечисление известных имен, еще трое современников Фалеса могли привнести атмосферу того времени поближе к нашим дням. В то время как Фалес осваивал азы дедуктивного метода в чисто математическом его понимании, триада израильских проповедников – Эзекиль, Аггей и Захария – увещевали Израиль прекратить предаваться пороку, а иначе вера будет сметена гневом Иеговы, и призывали завершить строительство храма Соломона в Иерусалиме. Они также предсказывали пришествие Христа, который избавит мир от войн и прочих напастей.

Возможно, это только безосновательная фантазия, но, если вглядываться в прошлое, начинает казаться, что наша цивилизация где-то точно проскочила поворот на Восток вместо Запада в тот критичный VI век до н. э. Поскольку, когда умер Фалес, Будде Гаутаме, «одному из просвещенных», было около пятнадцати лет. Частично совпав по срокам с Пифагором, Гаутама пережил Фалеса на шестьдесят пять лет.

Фалес и Будда никогда не встречались. Но между тем традиционно утверждают, и, возможно, без всяких на то реальных оснований, что Пифагор в своих легендарных странствиях встречался с Буддой. Если они все-таки встретились, то какими мыслями обменялись эти два человека, по всему миру признанные наиболее влиятельными учителями всех времен?

Был ли будда, со своим настойчивым призывом к правильному мышлению как первому шагу на пути из восьми ступеней к благости, удовлетворен попыткой греков четко определить, что можно считать одной из разновидностей правильного мышления? Но нет явных свидетельств, что Будда вообще слышал о математике, которую открывал миру Пифагор с присущим ему рвением первооткрывателя, изучающего вновь найденный континент. Пифагор же, со своей стороны, должен был узнать много больше, чем знал до этого, о переселении душ и таинствах успешных реинкарнаций.

Где бы он ни получил эти расслабляющие восточные верования, которые сегодня владеют миллионами неприкасаемых в своей добровольной деградации, Пифагор держал их так крепко, словно какой-нибудь индийский факир. Они и его страстное увлечение числами вскормили фантастическое явление – метафизику, которая мигрировала из мировоззрения в мировоззрение, пока, очищенная наконец-то от всех разумных пятен, она не погрузилась в собственную нирвану в свободной от примесей магии чисел физики ХХ века.

Если бы Пифагор и Будда встретились, вполне вероятно, что мир обошелся бы без трех веков экспериментальной науки, что последовали за Галилеем и Ньютоном. Вполне реально, что это ускорение в понимании законов развития физической материи могло бы начаться сразу же после их встречи, и Платон, а не Ньютон объявил бы о законе всемирного тяготения. А еще на половину поколения позже Эйнштейн вселился бы в тело Аристотеля.

К сожалению для этой консумации познания и здравого смысла, сам Пифагор погряз в научных опытах и потерял свое могучее эго в бесконечном эксперименте. Наука, математика и философия нерешительно повернулись на Запад, а не на Восток.

Преданный сторонник современной магии чисел будет вынужден признать, что поворот на Запад задержал промышленную революцию до конца XVIII века. Поворот лицом к Востоку вверг бы мир в нее еще в III веке до н. э., и Вторая мировая война могла бы случиться на первом году нашей эры. А в каком состоянии был бы наш мир сегодня, не сможет ответить даже самый квалифицированный нумеролог.

Глава 5

Различия во мнениях

Когда благодарные сограждане поинтересовались у Фалеса, какую награду хотел бы он получить за свои деяния для них и города, в ответ прозвучало: «Веры в мои открытия». Если судить по дошедшим до нас письменным свидетельствам, Фалес был первым, кто предположил, что созданные разумом нематериальные, неосязаемые ценности способны пережить материальные.

Это предположение оказалось проницательным. Богатый царь Крез был помешан на золоте. Его сравнительно небогатый друг, хитроумный Фалес, увлекался идеями. Он нацелился на бессмертие. Если Крез, общеизвестный как самый богатый человек Античности, и внес в развитие цивилизации что-нибудь, кроме поговорки «богат как Крез», это уже давным-давно забыто. И хотя Крез, просто как имя, возможно, и более известен, чем Фалес, но именно последний остается вечно живым. Уже одно из его достижений обеспечило ему бессмертие, которого он желал. Дедуктивный метод исследования, используемый в геометрии, традиционно приписывается Фалесу. Он только мельком затронул то, что Пифагор и его последователи развили в заслуживающие доверия основы математики, как они воспринимаются в наше время, и все же он был первым, о ком упоминает история, кто предвидел ее возможности.

Как станет известно позднее, есть основания считать, что древние египтяне тоже применяли метод дедуктивных умозаключений в геометрии. Но, кроме неоднозначного утверждения одного человека, никаких свидетельств на этот счет обнаружено не было. Согласно греческим преданиям и истории, первым был Фалес в VI веке до н. э.

Связь дедуктивного метода со всей математикой и наукой столь важна своими последствиями, что следует немного остановиться на этом методе, прежде чем перейти к личности самого Фалеса. Самая суть вопроса состоит в том, что без дедуктивных умозаключений математики в том виде, в котором она понимается профессиональными математиками, просто не существует. Данное категоричное заявление обычно приводит в ярость тех романтиков, кто находит упоение в выискивании поразительных образчиков математического гения во всем, от учетных записей мумифицированного египетского управляющего до зигзагообразных молний на горшках индейцев племени зуни. Никто не станет отрицать, что подобные вещи могли предшествовать появлению арифметики и геометрии или что они могли бы натолкнуть людей, способных мыслить размеренно, позитивно и абстрактно, на проявление математических начал. Но путать их с математиками – все равно что смешать все мышление с розовым туманом, где мифология дикарей не может быть отличима от всемирного тяготения Ньютона и пространства-времени Эйнштейна. Нежелание провести границы между тем, что математики называют математикой и полуэмпиризмом, что предшествует этой математике, но иногда по ошибке принимается за математику, вводит в заблуждение многочисленных философов от античных греков до Канта в XVIII веке. К этому еще вернемся в соответствующем разделе.

«Дедуктивные рассуждения» можно заменить в данной работе более коротким, но не менее емким термином – «доказательство». Достаточно двух деталей. Доказательство в математике происходит от четко выраженных допущений, ясно обоснованных. Допущения могут в разное время именоваться постулатами и чуть реже аксиомами. В античные времена преобладала уверенность, что постулаты математики являются очевидными истинами, присущими «природе вещей», не требующими доказательств и являющимися непреложными для любой последовательной (не противоречащей самой себе) оценки «чисел» и «пространства». Эта вера в жизненную необходимость постулатов, скажем в элементарной геометрии и арифметике, просуществовала до XIX века. Затем мало-помалу приходило осознание, что постулаты, ставшие основой математики, вовсе не обязательные истины в описанном смысле, но некое договорное условие, на которое согласны все математики. В частности, постулаты геометрии явно человеческого происхождения. Они не были навязаны человечеству «природой вещей» или каким-либо еще экстрачеловеческим посредничеством. Этот очень неадекватный итог диспута длиной в два тысячелетия вполне достаточен на данный момент, позднее он будет досконально рассмотрен.

Вторая деталь, которую следует постоянно учитывать, касается процесса, посредством которого математические выводы появляются на базе постулатов. Он и именуется дедукцией. Постулаты принимаются на веру без дальнейших доказательств. Любое утверждение, подразумеваемое постулатами, считается справедливым просто по определению. В задачи математики входит поиск утверждений, вытекающих из постулатов.

Здесь вполне уместно отметить, что пользоваться можно только системой умозаключений, согласованной между математиками. Эта система именуется формальной логикой. Со времени своего появления в Древней Греции и до настоящего времени она получила широкое распространение, классическая же логика Аристотеля является лишь разделом формальной или математической логики, традиционно используемой. Подобно постулатам, на которые она опирается, логика стала предметом всеобщего соглашения между математиками. Она не была навязана им судьбой или непреложной необходимостью. Данный вопрос также нуждается в дополнительном освещении, но не в данный момент.

Мы не затрагиваем вопрос, по какой причине математики отдают предпочтение той или иной системе постулатов в различных случаях, что легко себе представить, или почему они используют один метод рассуждений вместо другого. Так уж исторически сложилось, что геометры из глубочайшей древности перешли к определенным продуктивным методам размышлений, подсказанным им их практическим опытом. Прежде чем они осознали, что делают, они уже размышляли дедуктивно. Их умозаключения всегда оказывались последовательными.

Исходя из этого отдельные философы-математики вывели наивеличайшее и нисколько не логичное утверждение: логика есть необходимость, неминуемая судьба, навязанная человеческому разуму из ниоткуда. Логика не была изобретением человека, а только лишенным временной привязки даром человечеству от бессмертных богов. В той или иной форме эта вера просуществовала ни много ни мало более двух тысяч лет. Сомнения в ее полезности появились только совсем недавно.

Дальнейшие взаимозачеты могут слишком усилить претензии одной школы философии по указанным базовым вопросам за счет ее конкурентов. Действительно ли Фалес (или любой другой человек) изобрел дедуктивный метод, или он просто наткнулся на него? Такой же вопрос мы поднимали в отношении чисел: кто-то изобрел числа или их просто нашли? Нет необходимости повторять дедуктивные рассуждения, которые уже прозвучали о числах. Каждый вправе выбрать ответ, который ему по нраву. Великие умы не приходили к согласию. Что касается нас, нам хватит и того, чтобы продолжить узнавать, как возникло это непримиримое разногласие во мнениях.

Что станет с египетскими и вавилонскими изысканиями в области чисел и всего остального в рамках суженной математической концепции, описанной выше? Поскольку ни те ни другие никогда ничего не доказывали (насколько это известно на настоящий момент), их вклад не имел ничего общего с математикой. Никого не заставляют принять столь сбивающий с толку и столь оскорбительный вывод, да мало кто и примет его. В обыкновенных исторических записках, возможно, нет ни необходимости, ни смысла проводить четкую границу между тем, что следует именовать математикой, и тем, что не заслуживает носить этот громкий титул. Настоятельное требование доказательств как критерий – это современный подход. Если пользоваться только им, то придется отвергнуть слишком многое из того, что наши предки именовали математикой, и сильно посягнуть на наши собственные достижения.

Компромиссом было бы признать все, что большинством компетентных математиков конкретной эпохи было принято как доказанное, не важно, выдержало ли это критику позднейших поколений математиков или было признано ошибочным или неполным. Но тогда потребовался бы тест на признание, что есть по сути доказательство. Те, кто пытался подтвердить свои выводы, могут считаться математиками, а остальные – эмпирики.

Разграничение достаточно известно редакторам математической периодики, которым положено решать, является ли представленная им на публикацию работа математической или какой-либо еще. Воспользуемся примером из арифметики. Прилежный расчетчик осознает после сорока лет нещадных трудов, что 8 и 9 – единственные числа меньше миллиарда миллиардов, отличные друг от друга только на 1, для которых характерно следующее: оба числа являются точными степенями, основания и показатели которых также отличаются на единицу (8 = 23, 9 = 32). Истрепав несколько калькуляторов и немного собственной нервной системы, потенциальный математик считает дело законченным и принимает решение обнародовать свое исследование. Итак, он пишет редактору любимого математического журнала о своей гипотезе: «Единственными точными степенями, отличными на 1, являются 8 и 9». – «Возможно, вы правы, – отвечает редактор, – но как вы это докажете? С надеждой на известие от вас в ближайшем будущем возвращаю вам вашу рукопись». С тех пор все ждет ответа.

Глава 6

Мудрость как профессия

На примере жизни Фалеса хорошо видны признаки нового праздного класса и зарождение новейшего культа профессионально мудрого человека. Как-то слабо верится, что, если бы философы и математики Древней Греции не были освобождены от физического труда, они способны были бы внести серьезный вклад как в философию, так и в математику.

Незаурядный человек, не выполняющий никаких обязанностей, которые в сознании обычного человека именуются работой, не был редкостью в VI веке до н. э. Действительно, задолго до этого несколько тысяч подобных людей одновременно проживали только в одном Египте. Эти облагодетельствованные смертные толпились как трутни, около замков и стола короля, добывая себе пропитание передачей указаний богов королю и простолюдинам.

Фалес и его последователи по профессии не притворялись, будто дают обществу что-либо стоящее, как поступают священники. Мудрецы новой формации крепко стояли на своих ногах, не опираясь на богов, и едва ли позволяли себе расточительность тратить хотя бы мысль на рабов, обеспечивавших им пищу телесную. Некоторые из этих несгибаемых мыслителей были сами хорошо обеспечены, другие же находились на содержании у богатых покровителей.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Вы ознакомились с фрагментом книги.

Для бесплатного чтения открыта только часть текста.

Приобретайте полный текст книги у нашего партнера:

Полная версия книги