Природа как звуковых волн, так и волн, расходящихся на поверхности воды, легко объясняется с помощью классической механики: это просто перемещающееся колебание некоторой среды. Вот почему звук не может распространяться в вакууме, но может проходить через воздух, воду или металл. Например, в воздухе при комнатной температуре звуковые волны – колебательные возбуждения сжатия-разрежения воздуха – распространяются со скоростью примерно 1260 км/ч.
Внутри корабля Галилея воздух и вода ведут себя так же, как на берегу, потому что воздух в каюте и вода в сосуде движутся с той же скоростью, что и пассажиры. А теперь вообразите, что вы выходите на палубу и рассматриваете волны в океане или же измеряете скорость звуковых волн другого корабля, издающего гудок. Скорость, с которой эти волны приходят к вам, зависит от скорости вашего движения относительно среды (воды или воздуха), в которой они распространяются.
Другими словами, скорость, с которой волны в океане приходят к вам, зависит от того, насколько быстро вы движетесь в направлении источника этих волн или удаляетесь от него. Аналогично, скорость звуковых волн относительно вас зависит от вашего движения относительно воздуха, в котором распространяется эта звуковая волна.
Относительные скорости – ваша и источника – суммируются. Представьте себе, что вы в океане, волны движутся к вам со скоростью 16 км/ч. Если вы вскочите на гидроцикл и направите его на скорости 83 км/ч навстречу волнам, то увидите, что они приближаются к вам и проносятся мимо со скоростью (относительно вас) 99 км/ч. Аналогично, представьте себе, что звук идет к вам из рупора на борту далекого корабля, и в неподвижном воздухе в направлении берега он распространяется со скоростью 1260 км/ч. А если вы вскочите на гидроцикл и помчитесь в направлении этого корабля со скоростью 66 км/ч, звуковые волны будут проноситься мимо вас со скоростью 1326 км/час.
И тогда напрашивается вопрос, который мучил Эйнштейна уже с шестнадцати лет, когда он воображал себя скользящим рядом с лучом света: ведет ли себя свет аналогично?
Ньютон считал, что свет – прежде всего поток частиц, испущенных источником. Но во времена Эйнштейна большинство ученых приняли альтернативную теорию, разработанную современником Ньютона Христианом Гюйгенсом, согласно которой свет нужно считать волной.
К концу XIX века большое количество экспериментов подтвердили правоту волновой теории. Например, Томас Юнг поставил знаменитый эксперимент, который сейчас воспроизводят ученики средней школы и который демонстрирует, что свет, проходящий через две щели, формирует интерференционную картину, напоминающую картину, образованную волнами на поверхности воды, прошедшими через две щели. В обоих случаях горбы и впадины волн, исходящих из каждой щели, встречаясь, в некоторых местах усиливают друг друга, а в других – друг друга гасят.
Джеймс Клерк Максвелл содействовал упрочению этой волновой теории, установив связь между светом, электрическим и магнитным полями. Он вывел уравнения, которые описывали поведение электрических и магнитных полей. Максвелл показал, что эти электромагнитные волны должны распространяться с определенной скоростью – примерно 300 000 км/с[287]. Это совпало со значением, которое ученые уже получили в экспериментах для скорости света, и они поняли, что это не простое совпадение[288].
Стало ясно, что свет – это та часть электромагнитного спектра, которая воспринимается нашим зрением. А весь спектр включает радиоволны, которые мы сейчас называем AM[289] (средние и длинные волны радиоволны с длиной волны порядка километра), FM (короткие радиоволны, длина волны порядка метра) и микроволновое излучение (длина волны порядка сантиметра). При уменьшении длины волны (увеличении ее частоты) электромагнитные волны переходят в видимый диапазон, простирающийся от красного (примерно 700 нм) до фиолетового (примерно 400 нм). Еще более короткие волны попадают в диапазон ультрафиолетовых, рентгеновских волн и гамма-лучей. Когда мы говорим о “свете” или “скорости света”, мы имеем в виду не только видимые глазом, а вообще все электромагнитные волны.
И тут возникают важные вопросы. Что это за среда, в которой эти волны распространяются? А их скорость 300 000 км/с – это скорость относительно чего?
Ответ вроде бы напрашивался сам собой: световые волны – это возмущение невидимой среды, которая называется эфиром, и скорость света – это скорость его движения относительно эфира. Другими словами, эфир для света должен играть примерно ту же роль, что и воздух для звуковых волн. Позже Эйнштейн заметил:
“Предположение о том, что свет можно представить себе как колебательный процесс в упругой инертной среде, заполняющей все пространство, казалось неоспоримым”[290].
К сожалению, этому гипотетическому эфиру пришлось приписать многие странные свойства. Поскольку свет даже от очень удаленных звезд может доходить до Земли, эфир должен был бы заполнять всю известную Вселенную. Он должен был бы накрывать все как паутиной и, образно говоря, быть настолько эфемерным, чтобы не оказывать влияния на движение не только планет, но даже легких пушинок и в то же время быть достаточно упругим, чтобы в нем могли возникать колебания огромной частоты.
Все эти странности привели к тому, что на эфир в конце XIX века была устроена настоящая охота. Если бы свет был действительно рябью в эфире, мы бы увидели, что волны проходят мимо нас с большей скоростью, когда мы двигаемся сквозь эфир в направлении источника излучения. Ученые изобрели всевозможные гениальные устройства и придумали хитроумные схемы экспериментов, позволяющие уловить эту разницу. Они выдвинули массу гипотез того, что может представлять собой эфир. Они искали эфир в виде неподвижной субстанции, через которую движется Земля. Они считали, что часть эфира увлекается Землей и образует что-то вроде пузыря, наподобие того как это происходит с ее атмосферой. Они даже рассмотрели невероятную гипотезу о том, что Земля представляет собой единственный неподвижный относительно эфира объект, а все остальные космические тела, включая другие планеты, Солнце и звезды, вращаются вокруг нее, что, вероятно, заставило Коперника перевернуться в гробу.
Один из экспериментов, про который Эйнштейн позже сказал, что тот “был чрезвычайно важным для специальной теории относительности”[291], проделал французский физик Ипполит Физо, попытавшийся измерить скорость света в движущейся среде. Он расщепил луч на два с помощью полупрозрачного посеребренного углового зеркала, которое направляло один из лучей на поток воды в направлении его движения, а другой – в противоположном направлении. Оба луча потом встречались. Если бы свет проходил один из путей за большее время, чем другой, горбы и впадины обеих волн при их встрече уже не должны были совпасть. Экспериментатор, если такое случилось бы, мог бы это заметить по возникшей в этом месте интерференционной картине.
Другой и гораздо более знаменитый эксперимент поставили в 1887 году Альберт Майкельсон и Эдвард Морли. Они сконструировали хитроумную установку, в которой, как и у Физо, световой луч расщеплялся на два, один из лучей направлялся на зеркало в плечо, ориентированное вдоль скорости движения Земли, и там претерпевал несколько отражений, двигаясь по направлению движения Земли и против него, а второй луч – в перпендикулярное плечо, И после того, как оба луча встречались, полученную интерференционную картину (или ее отсутствие) анализировали, чтобы понять, возникает ли разность фаз, то есть больше ли времени требовалось лучу, пролетающему часть пути против предполагаемого эфирного ветра, чем второму лучу, двигавшемуся в перпендикулярном направлении, чтобы долететь до детектора.
Но вне зависимости от того, кто проводил эксперимент, как смотрели и какие делались предположения относительно поведения эфира, никто так и не смог увидеть неуловимую субстанцию. Вне зависимости от того, как и что в эксперименте двигалось, наблюдалась всегда одна и та же скорость света.
И ученые, хотя и не без колебаний, направили свои усилия на разрешение дилеммы: почему, если эфир существует, ни в одном эксперименте его не удается обнаружить. Наиболее известная гипотеза возникла в начале 1890-х годов и принадлежала двум ученым: гениальному космополиту Хендрику Лоренцу, голландскому мэтру теоретической физики, и ирландскому физику Джорджу Фитцджеральду, – независимо друг от друга предположившим, что все твердые тела при движении через эфир слегка сжимаются. Согласно этой гипотезе, сокращение Фитцджеральда – Лоренца укорачивает все, включая длину плеч в опыте Майкельсона – Морли, причем ровно настолько, чтобы влияние эфира на свет невозможно было увидеть.
Эйнштейн чувствовал, что ситуация “стала очень депрессивной”. Как он считал, сами ученые не были в состоянии объяснить электромагнетизм, используя ньютоновский “механистический взгляд на природу”, и это “привело к фундаментальному дуализму, который долго выносить было невозможно”[292].
Путь Эйнштейна к теории относительности
Однажды Эйнштейн сказал: “Новая идея приходит неожиданно и чаще интуитивным образом”. Но поспешил добавить: “Интуиция есть не что иное, как проявление накопленного интеллектуального опыта”[293].
Теория относительности так и создавалась Эйнштейном – с помощью интуиции, базирующейся на десятилетнем интеллектуальном и личном опыте[294]. Самым важным и очевидным, на мой взгляд, было его глубокое знание и понимание теоретической физики. Еще ему помогала развившаяся во время учебы в Арау способность визуализировать мысленные эксперименты. Полезным оказалось и знание основ философии: Юм и Мах приучили Эйнштейна скептически относиться к вещам и явлениям, которые невозможно наблюдать непосредственно. И этот скептицизм был усилен присущей ему бунтарской склонностью не доверять авторитетам.
Была и еще пара обстоятельств, возможно, усиливавших его способность наглядно представлять себе физическую ситуацию и обнажать суть концепции. Во-первых, это его познания в технике, полученные в детстве, когда он помогал дяде Якобу отлаживать магниты и движущиеся катушки в генераторах. А во-вторых, когда он работал в патентном бюро, его начальник всячески поощрял его скептическое отношение к содержанию поданных заявок, и кроме того, тогда через его руки прошло множество заявок по новым методам синхронизации часов. Помогло и то, что Эйнштейн в Берне снимал квартиру поблизости от Часовой башни и железнодорожной станции, над помещением телеграфа, а в Европе как раз тогда началось использование электрических сигналов для синхронизации часов внутри часовых зон. И наконец, рядом оказался друг, сыгравший роль резонатора идей, – Мишель Бессо, с которым они вместе работали в патентном бюро и обсуждали заявки на электромеханические приборы[295].
Насколько сильно каждое из этих обстоятельств повлияло на создание теории, можно оценить лишь субъективно. В конце концов, даже сам Эйнштейн не мог с уверенностью рассказать, как развивался процесс рождения теории. “Трудно сказать, как я пришел к теории относительности, – говорил он, – существовало так много скрытых сложностей, которые стимулировали мою мысль”[296].
Но одну вещь мы можем утверждать с уверенностью – мы точно знаем, с чего Эйнштейн начал. Он не раз повторял, что его путь в теорию относительности начался с мысленного эксперимента, который он провел в шестнадцать лет, когда представлял себя летящим рядом со световым лучом с той же скоростью. Как он позже рассказывал, возникал “парадокс”, который мучил его последующие десять лет, и он сформулировал его следующим образом:
“Если я лечу рядом с лучом со скоростью с (равной скорости света в вакууме), я должен воспринимать этот луч света в виде остановившегося во времени, но осциллирующего в пространстве электромагнитного поля. Но опыт подсказывает, что такого не может быть, к тому же это противоречит уравнениям Максвелла. С самого начала мне интуитивно было ясно, что для этого наблюдателя все должно происходить так же, как и для наблюдателя, находящегося в покое относительно Земли, поскольку непонятно, как первый наблюдатель узнает или сможет определить, что он находится в состоянии быстрого равномерного движения. Легко увидеть, что уже в этом парадоксе содержались зачатки специальной теории относительности”[297].
Этот мысленный эксперимент не обязательно опровергал эфирную теорию распространения световых волн. Действительно, теоретик, предполагавший, что эфир существует, мог вообразить застывший луч света. Но интуиция подсказывала Эйнштейну, что законы оптики должны подчиняться принципу относительности. Другими словами, уравнения Максвелла, которые определяют скорость света, должны быть одними и теми же для всех наблюдателей, движущихся с постоянными скоростями. То, что Эйнштейн сделал акцент на этом своем воспоминании, указывает на то, что представление о застывшем луче света – или застывших электромагнитных волнах – инстинктивно казалось ему неправильным[298].
Кроме того, этот мысленный эксперимент показывает: он чувствовал, что ньютоновские законы механики противоречат постоянству скорости света, следующему из максвелловских уравнений. Все это породило в нем чувство “психологического напряжения”, которое его сильно нервировало. Позднее он вспоминал: “В самом начале, когда специальная теория относительности начала прорастать во мне, у меня возникали разные виды психологического дискомфорта. Когда я был молодым, я зачастую в состоянии замешательства на несколько недель забрасывал [эту тему]”[299].
Существовало также и более специальная “асимметрия”, которая начала его беспокоить. Когда магнит движется относительно петли из проволоки, в ней возникает электрический ток. Как Эйнштейн знал по опыту обращения с генераторами, которые делали на семейных предприятиях, величина электрического тока одинакова, если магнит движется, а катушка кажется неподвижной и если катушка движется, а магнит кажется неподвижным. Кроме того, он в 1894 году прочел книгу Августа Фёппля “Введение в теорию электричества Максвелла”. В ней была глава “Электродинамика движущихся проводников”, в которой автор выражал сомнение в том, что индукция в случае, когда движется магнит, и в случае, когда движется проводящая катушка, будет разной[300].
“Но в теории Максвелла – Лоренца, – вспоминал Эйнштейн, – теоретическая интерпретация двух этих явлений различается”. В первом случае, согласно закону индукции Фарадея, движение магнита через эфир создает электрическое поле. Во втором случае при движении проводящей катушки в магнитном поле возникает сила Лоренца и, следовательно, электрический ток. Эйнштейн говорил: “Мысль о том, что эти два случая должны существенно различаться, была для меня непереносимой”[301].
В течение многих лет Эйнштейн боролся с концепцией эфира, которая в этих теориях электрической индукции служила для теоретического определения понятия “покоя”. Еще будучи студентом Цюрихского политехникума, он в 1899 году написал Милеве Марич, что “введение в теорию электричества понятия «эфир» привело к введению концепции среды, движение которой можно описать, как мне кажется, только не приписывая ей какого-либо физического смысла”[302]. Тем не менее в том же месяце он, приехав на каникулы в Арау, вместе с учителем своей старой школы стал работать над способами обнаружения эфира. Он написал Марич:
“У меня есть хорошая идея, как определить влияние движения тела относительно эфира на скорость распространения света”.
Профессор Вебер сказал тогда Эйнштейну, что его подход нереалистичен. Возможно, по предложению Вебера Эйнштейн прочитал работу Вильгельма Вина, который описал тринадцать экспериментов по поискам эфира с нулевым результатом, включая эксперименты Майкельсона и Морли, а также Физо[303]. Кроме того, в какой-то момент (до 1905 года) он прочитал книгу Лоренца 1895 года “Попытка построения теории электрических и оптических явлений движущихся тел”, из которой узнал больше про эксперимент Майкельсона – Морли. В этой книге Лоренц, прежде чем перейти к построению своей теории сокращения предметов, привел обзор всех неудавшихся попыток найти эфир[304].
“Индукция и дедукция в физике”
Ну и какой эффект оказали на Эйнштейна, вынашивавшего свои идеи по относительности, результаты эксперимента Майкельсона и Морли, которые не обнаружили свидетельств существования эфира и изменения наблюдаемой скорости света в зависимости от того, в каком направлении движется наблюдатель? Послушать его самого, так вообще никакого. Временами он утверждал (и ошибался), что до 1905 года вообще об этих экспериментах ничего не знал. Противоречивые заявления Эйнштейна в течение последующих пятидесяти лет о влиянии на его работы опыта Майкельсона – Морли полезно принять во внимание как напоминание о том, насколько нужно быть осторожным при анализе истории, основанной на смутных воспоминаниях[305].
Путаница с высказываниями Эйнштейна началась в 1922 году, когда он в приветствии конференции, произнесенном им в японском городе Киото, заметил, что неудачная попытка Майкельсона обнаружить эфир была “первой ниточкой, которая привела меня к тому, что мы называем принципом специальной теории относительности”. А в тосте на обеде в Пасадене в честь Майкельсона в 1931 году Эйнштейн, отдав должное именитому экспериментатору, выразился очень витиевато: “Вы обнаружили коварное противоречие в существующей в то время «эфирной» теории света и стимулировали возникновение концепций Лоренца – Фицджеральда, из которых выросла специальная теория относительности”[306].
Эйнштейн описал свой мыслительный процесс в беседах с основоположником гештальтпсихологии Максом Вертгеймером, который позднее назвал результаты эксперимента Майкельсона – Морли “ключевыми”, задавшими направление мыслительного процесса Эйнштейна. Но Артур И. Миллер показал, что это утверждение, возможно, было обусловлено тем, что Вертгеймер хотел использовать эту историю в качестве иллюстрации успешности принципов гештальтпсихологии[307].
В последние годы жизни Эйнштейн внес еще большую путаницу в этот вопрос, сделав ряд утверждений на эту тему в беседах с физиком Робертом Шенкландом. Сначала он заявил, что прочитал про эксперимент Майкельсона – Морли только после 1905 года, потом – что прочитал о нем в книге Лоренца до 1905 года, а в конце добавил: “Я думаю, что считал этот результат само собой разумеющимся”[308].
Последнее утверждение – наиболее важное, поскольку Эйнштейн повторял его много раз. К тому времени как он начал серьезно работать над теорией относительности, он просто принял как само собой разумеющееся, что не нужно изучать все эксперименты, связанные с поиском движения эфира, поскольку согласно его изначальной точке зрения все попытки найти эфир были обречены на неудачу[309]. Для него смысл этих экспериментальных результатов состоял в том, что они укрепляли его уверенность в применимости принципа относительности Галилея и к световым волнам[310].
Это, возможно, и объясняет незаслуженно малое внимание, которое он уделил результатам экспериментов в своей статье 1905 года. Он никогда не ссылался ни конкретно на эксперимент Майкельсона – Морли, даже когда этого требовала логика изложения, ни на эксперимент Физо, использовавшего движущуюся воду. Вместо этого сразу после дискуссий о том, что имеет значение лишь относительное движение магнита и катушки, он просто упомянул “неудавшиеся попытки определить движение Земли относительно светоносной среды”[311].
Некоторые научные теории строятся в первую очередь индуктивно: анализируется множество экспериментальных данных, а потом разрабатываются теории, объясняющие эти экспериментальные данные. Но некоторые теории создаются в основном при помощи дедукции: за основу берутся элегантные принципы и постулаты, признанные незыблемыми, и из них выводятся следствия. Все ученые применяют оба подхода в разных пропорциях. У Эйнштейна было отличное чутье на экспериментальные результаты, и он его использовал, чтобы отобрать те из них, которые можно использовать в качестве отправных точек для создания теории[312]. Но упор он делал прежде всего на дедуктивный подход[313].
Вспомним, как в своей статье по броуновскому движению Эйнштейн так странно, но вполне точно приуменьшил значение экспериментальных результатов в том выводе, который был, по существу, получен с помощью теоретической дедукции. С теорией относительности была похожая ситуация. То, что он имел в виду, говоря о броуновском движении, он в точности повторил по поводу роли эксперимента Майкельсона – Морли при выводе принципа относительности: “Я был совершенно уверен в справедливости этого принципа до того, как узнал об этом эксперименте и его результатах”.
На самом деле все три эпохальные статьи 1905 года начинаются с описания его намерения использовать дедуктивный подход. Каждую из них он начинает не со ссылки на необъясненные экспериментальные результаты, а с указания на некоторые несообразности, которые следуют из альтернативных теорий. Затем он формулирует некие важные принципы и в то же время приуменьшает роль опытных данных, будь то броуновское движение, излучение твердого тела или скорость света[314].
В работе 1919 года “Индукция и дедукция в физике” он описал причины, по которым предпочитал такой подход:
“Простейшее представление о том, как возникает эмпирическая наука, можно получить из сравнения с индуктивным методом.
Отдельные факты отбираются и группируются таким образом, что закономерности, объединяющие их становятся очевидными…
Однако на этом пути большого продвижения в научном познании не будет. ‹…› По-настоящему большой прогресс в нашем постижении науки может возникнуть только на пути, диаметрально противоположном индукции. Интуитивное понимание сущности большой совокупности фактов приводит ученого к постулированию гипотетической основной закономерности или закономерностей. Из этих закономерностей он уже выводит свои заключения”[315].
Его приверженность этому методу будет возрастать со временем.
“Чем глубже мы проникаем в суть и чем более всеохватывающими становятся наши теории, – провозгласит он в конце жизни, – тем меньше эмпирических знаний нужно для того, чтобы создать эти теории”[316].
К началу 1905 года в своих попытках объяснить электродинамику Эйнштейн уже начал отдавать предпочтение дедуктивному методу, а не индуктивному. Позднее он скажет: “Постепенно я разочаровался в возможности открыть истинные законы природы, пытаясь конструктивно проанализировать полученные из экспериментов данные. Чем больше и чем отчаяннее я пытался это сделать, тем больше убеждался, что только открытие универсальных формальных принципов может привести нас к уверенным результатам”[317].
Два постулата
Теперь, когда Эйнштейн решил строить свою теорию сверху вниз, то есть выводить ее из первых принципов, перед ним встал выбор: с какого постулата, с каких положений общего принципа начать?[318]
Его первым постулатом стал принцип относительности, утверждавший, что все фундаментальные законы физики, в том числе уравнения Максвелла, описывающие поведение световой волны, являются одинаковыми для всех наблюдателей, движущихся относительно друг друга с постоянной скоростью. Или, если говорить более точно, они неизменны во всех инерциальных системах отсчета, то есть одинаковы для того, кто покоится относительно Земли, и того, кто движется с постоянной скоростью в поезде или космическом корабле. Он поверил в этот постулат еще со времени своего мысленного эксперимента, в котором он представлял себя летящим вдоль светового луча: “С самого начала мне интуитивно было ясно, что с точки зрения этого наблюдателя все должно подчиняться тем же законам, что и для наблюдателя, покоящегося относительно Земли”.
Для сопутствующего постулата, касающегося скорости света, у Эйнштейна было два варианта.
1. Он мог рассматривать излучение света как испускание частиц и считать, что свет вылетает из источника подобно пулям из ружья. Тогда не было необходимости в эфире. Частицы света могли распространяться в пустоте. Их скорость измерялась бы относительно источника. Если бы источник приближался к вам, вылетающие частицы летели бы к вам быстрее, чем если бы он от вас удалялся от вас. (Представьте себе питчера (подающего в бейсболе), который кидает мяч со скоростью 160 км/ч. Если он бросает мяч из машины, мчащейся на вас, мяч полетит к вам быстрее, чем если машина с подающим мяч питчером будет от вас удаляться.) Другими словами, свет, излучаемый звездой, будет распространяться со скоростью 300 000 км/с, но если звезда летела бы к Земле со скоростью 16 000 км/с, скорость испускаемого ею света относительно наблюдателя на Земле должна была бы быть равной 316 000 км/с.
2. Альтернативное утверждение состояло в том, что скорость света постоянна – 300 000 км/с – и не зависит от движения источника, что больше согласовалось с волновой теорией света. Если использовать аналогию со звуковыми волнами, в этом случае звук сирены пожарной машины не доходил бы до вас быстрее из-за того, что она мчится к вам, а не стоит на месте.