Рис. 17. Объем, занимаемый веществом: а – кристаллическое состояние; б – состояние кристаллического газа; в – состояние реального газа, здесь объем зависит от давления и температуры
Ядро Земли образовалось в результате термического разложения пород центральной части Земли, поднятия и выхода легких элементов из зоны ядра, перехода тяжелых элементов ядра в сжатое состояние кристаллического газа и гравитационного разделения этих элементов на слои.
Природа границы перехода между мантией и ядром Земли
Гипотеза 15
Геофизическими методами путем замера скоростей сейсмических волн определено, что на глубине примерно 2900 км наблюдается скачок плотности пород Земли. По этой границе глубинную сферу с более плотной породой назвали ядром Земли, а сферу выше этой границы назвали мантией Земли. При переходе от мантии к ядру плотности пород резко увеличиваются от 5 до 10 г/см3 (рис. 18).
Рис. 18. Изменение плотности пород Земли с глубиной. 1- скачок плотности между мантией и ядром Земли
При этом объяснение природы этой границы никто до настоящего времени не дал. Если предположить, что здесь только изменяется элементарный состав веществ, то такое изменение должно быть и на кривой изменения плотностей атомов элементов. На (рис. 16) изображено изменение плотностей атомов, где атомы по абсциссе расположены в порядке возрастания плотностей. Видно, что нет резких скачков плотности от элемента к элементу, если не считать увеличение плотности гелия в конце кривой. Таким образом, можно сделать вывод о том, что скачок плотности при переходе от мантии к ядру не вызван только изменением состава вещества в этой зоне, а вызван, в большей мере, изменением состояния вещества. С увеличением глубины температура в Земле увеличивается. На какой-то глубине должен происходить термический распад веществ, сортировка элементов по плотностям и переход элементов с плотными атомами в кристаллический газ, а для менее плотных – поднятие из зоны разложения вещества, что должно наблюдаться как резкое увеличение плотности ниже этого горизонта. Такой скачок наблюдается на глубине 2900 км. Следовательно, здесь и есть граница распада пород, ниже которой находится элементарное вещество в состоянии кристаллического газа, а выше – породы Земли в обычном (твердом, жидком) состоянии. На этой границе происходит температурное химическое разложение пород, погружение в ядро Земли образовавшихся при разложении и перешедших в состояние кристаллического газа тяжелых атомов и поднятие в мантию образовавшихся легких атомов, которые в мантии при взаимодействии с другими веществами, образуют новые химические соединения.
Причина сравнительно небольшой плотности вещества ядра Земли
Гипотеза 16
По результатам замеров скоростей сейсмических волн определили, что плотность вещества в ядре Земли имеет величину 12.5 см3, что не соответствует (существенно меньше) плотностям ряда тяжелых элементов. Таких элементов достаточно много, это вольфрам 19.3 г/см3, гафний 13.31г/см3, золото 19.3г/см3, иридий 22.42г/см3, осмий 22.48г/см3, платина 21.45г/см3, рений 20.53г/см3, ртуть 14.19г/см3, тантал 16.6 г/см3, уран 18.7г/см3. Эти элементы в тех или иных количествах имеются в составе коры Земли, и, очевидно, они, благодаря своей высокой плотности, должны находиться в ее центре. Не утруждая себя занятием по объяснению такого несоответствия, наши предшественники [Goldschmidt,1923] просто решили, что этих элементов в ядре практически нет, и декларировали, что ядро в основном железное, объясняя этим еще и природу магнитного поля Земли. В последствии выяснилось, что при температуре выше 500°С железо теряет магнитные свойства, и поэтому железное ядро никак не может создавать магнитное поле, но пересматривать концепцию железа в ядре уже не стали.
Здесь дается следующее объяснение сравнительно малой плотности вещества ядра Земли при его составе из самых тяжелых элементов таблицы Д. И. Менделеева.
В период образования весь объем ядра Земли состоял из элементов в состоянии кристаллического газа, а плотность составляющих его веществ была значительно больше, чем в настоящее время. При продолжающемся нагревании от распада радиоактивных изотопов тепловая энергия атомов увеличивалась, и вещества в определенные исторические периоды перешли из состояния кристаллического газа в состояние реального газа с образованием небольших свободных межатомных пространств (рис. 17 в). При этом плотность веществ становится меньше. По этой причине плотности находящихся здесь элементов урана, тория, осмия, вольфрама, ртути, свинца и др. не равны их плотностям в кристаллическом состоянии, а находятся в диапазоне 10—12.5г/см3.
Перемещения элементов в ядре Земли, связанные с переходом «кристаллический газ – реальный газ» (КР перестановка)
Гипотеза 17
В архее ядро Земли включало в себя меньше слоев разных элементов (самые тяжелые элементы), и эти элементы в то время находились в состоянии кристаллического газа. Это состояние, когда атомы не связаны друг с другом, но свободное межатомное пространство отсутствует из-за высокого давления (рис. 17 б) [Тимофеев, 2012]. В этом состоянии слои элементов ядра Земли были расположены в последовательности увеличения плотностей атомов с глубиной (рис. 19 левая сторона). При повышении температуры от дальнейшего разогрева в течение длительного времени происходит переход атомарного вещества слоев из состояния кристаллического газа в состояние реального газа (рис. 19 правая сторона). В состоянии реального газа последовательность расположения слоев не зависит от размера атома, а зависит только от атомной массы, что определяется законом Авогадро, это приводит к перестановке слоев элементов в последовательность по нарастанию атомных масс к центру Земли. В центр Земли переместились уран, торий, свинец, а слои водорода, азота, кислорода, фтора, неона, гелия, аргона переместились вверх, что показано в рис. 19 правая сторона. Слои перестраиваются независимо друг от друга отдельными шагами от уровня к уровню. Поднявшись (или опустившись) на другой уровень, слой элемента задерживается в этом состоянии, пока плотность его вещества от изменения температуры не достигнет соответствующего значения для следующей перестановки, которая может начаться, например, через миллион лет.
Поскольку перестановка с переходом «кристаллический газ – реальный газ» имеет очень важное значение в процессе трансформации Земли, дадим ей отдельное название – КР перестановка.
Картина перестановок осложняется тем, что отдельно происходит перестановка каждого из 300 стабильных изотопов элементов, поскольку плотность их различна. Кроме того, поскольку в условиях ядра Земли существенную роль играют ядерные реакции, постоянно образуется и существует достаточно заметное количество нестабильных изотопов, а отдельные элементы могут иметь дублирующие слои в другой степени ионизации, на другом уровне с иной температурой.
Рис. 19. Начальное и конечное положение слоёв элементов при разогреве ядра Земли
В таблице показана последовательность расположения слоёв элементов в начальной и конечной стадии перестановки слоёв элементов ядра Земли, при переходе из кристаллического газа в реальный газ (в таблице ряд элементов, слои ионизированных элементов, а также слои изотопов не показаны).
КР перестановка началась в конце протерозоя примерно 540 миллионов лет назад, при этом кроме перемещений внутри ядра происходит изгнание газов H, He, N, O, F, Ne, Cl, Ar, как элементов с малыми атомными массами из ядра Земли. Перестановка приводит к инверсиям магнитного поля Земли, образованию силановой нефти, росту Земли и современной ее коры, выходу на поверхность вод океанов и газов атмосферы, образованию углеводородов. Процесс этой великой перестановки продолжается в настоящее время.
Подробней о кристаллическом газе в главе 11 гипотеза 130.
Слои газов элементов на поверхности ядра Земли
Гипотеза 18
Атомы газообразных элементов водород, гелий, азот, кислород, фтор, неон, сера, хлор, аргон (H, He, N, O, F, Ne, Cl, Ar) по причине малых размеров имеют высокую плотность, изначально в условиях ядра Земли находились в состоянии кристаллического газа в слоях расположенных между слоями других тяжелых элементов рис. 19. В ходе разогрева ядра и протекания КР перестановок эти газы вытесняются из ядра, поднимаются несколько охлаждаются в более высоких горизонтах (в том числе и из-за адиабатического расширения) и переходят в состояние близкое к состоянию кристаллических газов. В условиях высоких давлений эти элементы способны сжиматься до плотностей, превышающих наибольшую плотности пород мантии 5.6 г/см3 Земли и поэтому должны находиться ниже нижней границы мантии.
Вещество нижней мантии постепенно распадается, образуя новые слои в ядре. В предыдущие периоды образовались последовательно слои серы, серебра, гольмия, кобальта, диспрозия, цинка. В будущие миллионы лет ядро Земли последовательно наростится слоями эрбия, железа, тербия, циркония, гадолиния, углерода (в порядке уменьшения плотностей атомов). Всё это время слои газовых элементов H, He, N, O, F, Ne, Cl, Ar находились и будут продолжать находится на верхнем слое ядра Земли поднимаясь по мере его роста, и снижая свою плотность по мере поднятия на новые горизонты.
Верхний слой газовых элементов водород, имеет плотность кристаллического газа 5.64 г/см3 которая лишь немного превышает плотность пород нижней мантии. Когда эта плотность приблизится к плотности веществ нижней мантии газы по очереди начнут резкий подъём через мантию к поверхности Земли. Ряд газов, имеющих меньше атомные веса водород, гелий, азот, кислород по причине диффузии поднимаются в некотором количестве и сейчас, но поднятие затрудняется химическим взаимодействием их с породами мантии, в результате которых образуются вода, различные силикатные породы, руды и углеводороды. В некоторых случаях при местном скоплении избытков образовавшейся горячей воды с паром происходят её выброс совместно с разрушенной породой на поверхность с образованием курумников. Такие образования есть на Урале, также к такому образованию относится Патомский кратер в Восточной Сибири. По мере роста ядра Земли и приближении его границы к коре вся масса этих газов, а также близкая к ним по свойствам сера, поднимется в атмосферу, давление и температура которой увеличатся и приблизятся к состоянию атмосферы на Венере, которая опережает Землю по своей трансформации.
Расчётные значения состояния элементов в слоях ядра Земли
Гипотеза (концепция) 19
Строение современного ядра было рассчитано и впервые представлено в работе [Тимофеев, 2018] табл. 7. Положение слоёв элементов и их толщины в ядре Земли со временем меняются. Изменение происходит постоянно и одновременно по многим параметрам.
Целый ряд тяжелых элементов стабильных изотопов не имеют, поэтому находятся в составе Земли в незначительных количествах и в таблице не показаны. Это TcТ1/2 2х105лет, PmT1/2 30лет, PoT1/2 103 года, AtT1/2 8.3 часа, RnT1/2 16 часов, FrT1|2 22 мин, RaТ1/2 1617 лет, Ас Т1/2 21.6 года, Ра Т1/2 3.43х104 лет.
Не ионизированные элементы с плотностью кристаллического газа меньше 10 г/см3 в ядре образовывать свои слои не могут. Если они образуются в ядре Земли в результате ядерных реакций, то всплывают в мантию.
В расчёте принято, что практически все количество тяжелых элементов состава Земли находится в ядре и соответствует процентному составу элементов Земли, показанному в гипотезе №4 Реальный состав элементов Солнечной системы (Нуклонная концепция) [Тимофеев 2013а, Тимофеев 2013в]. Этот состав получен по методу, основанному на использовании в расчетах энергии связей нуклонов в ядрах атомов элементов. По процентному составу и массе Земли (5976Е+21кг) определена масса каждого элемента в планете и показана в столбце 5. В мантии и коре Земли количество тяжелых элементов небольшое, оно укладывается в величину погрешности расчетов и при рассмотрении строения ядра не учитывается. В столбце 6 показана ориентировочная плотность элементов в слоях, взятая из результатов сейсмических исследований ядра Земли на соответствующих глубинах. Используя величины количества элементов в слоях и их плотности, рассчитаны объемы, занимаемые элементами в ядре Земли, показаны в столбце 7. Для определения положения слоя элемента в ядре Земли, рассчитаны плотности элементов в состоянии кристаллического газа. Учитывая, что при максимально плотной гексагональной укладке атомы занимают 74.05% объема вещества, а 25.95% объема вещества составляет межатомное пространство, плотность кристаллического газа составит 0.7405 от плотности соответствующего атома. Расчётные значения плотностей кристаллических газов показаны в столбце 8.
На границе ядра и мантии Земли находятся слои элементов H, N, O, F, S, Cl, He, Ne, Ar суммарная толщина которых может составлять до 40 км.
Элементы Zn, Ho, Dy, Ag, Ni, Cd, Ga, Pd, Mo имеют плотности больше плотностей соответствующих кристаллических газов. Здесь нет свободного межатомного пространства, атомы зажаты в плотную структуру. Предположено, что электронные орбиты этих элементов несколько поджаты давлением до размеров, обеспечивающих соответствующую плотность вещества в слоях. Кинетическая теория газов в этих слоях не работает. В ядре Земли эти элементы по мере возрастания глубины расположены в порядке увеличения плотностей их кристаллических газов. Элементы, расположенные ближе к центру Земли – Ge, As, Se, Br, Ru, Rh, In, Sn, Sb, J, Te, Tu, Lu, Ta, Hf, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, U – имеют плотности в ядре Земли меньше плотностей их кристаллических газов, следовательно, эти элементы находятся в состоянии реального газа. Их плотности в одинаковых условиях по закону Авогадро пропорциональны атомным массам элементов, и расположение их по слоям должно быть в порядке увеличения атомных масс к центру Земли. Из-за высокой температуры в более глубокой части ядра Земли слои элементов, начиная со слоя 24 (рутения), становятся ионизированными. Степень ионизации элементов в слоях возрастает по мере нарастания глубины и доходит до +7 в центре Земли. В слоях ионизированных элементов объемы свободных межатомных пространств становятся больше, поскольку при ионизации атомы значительно уменьшаются в размерах.
В столбце 12 показаны объемы свободных межатомных пространств, которые рассчитаны по формуле:
где V- объем межатомного пространства;
ρсл – плотность элемента в слое;
ρкр– плотность элемента в состоянии кристаллического газа.
Большее свободное пространство означает, что ионизированные слои нагреты до более высоких температур. При положительном значении величины свободного межатомного пространства вещество находится в состоянии реального газа. При отрицательном значении величины вещество находится в состоянии кристаллического газа. Поскольку ядро Земли разогревается, слои со временем, по достижении определенных температур (рис. 17 в) переходят из состояния кристаллического газа в состояние реального газа, что приводит к уменьшению их плотности и перемещению веществ на другие уровни. Очередность перехода зависит от размеров атомов. Атомы малого размера переходят в состояние реального газа при меньшей температуре. По величинам межатомного пространства можно оценить последующие и предшествующие настоящему времени перемещения слоев элементов. Также по величинам свободного межатомного пространства можно рассчитать температуры в слоях ядра Земли, а по температурам определить степень ионизации веществ в слоях.
Учитывая массовый состав элементов и известную массу ядра Земли (внешнего + внутреннего) равную 1934 Е +21 кг определяем, что граница между ядром и мантией проходит по слою цинка с разложением цинковых пород нижней части мантии и нарастанием цинкового слоя в ядре. Масса погруженного цинка в ядро Земли в настоящее время по расчету составляет примерно 668х1021кг. Учитывая, что по расчёту количество цинка в массе Земли составляет 12.77% (763 х1021кг) оставшаяся масса цинка в мантии и коре 95х1021кг. При расчёте не по массам элементов, а по радиусам их слоёв граница ядра-мантии проходит примерно в зоне цинк-аргон, что практически совпадает с расчётом по массам.
При распаде пород вещества мантии, образующиеся тяжелые элементы, распределяются по соответствующим слоям ядра, а легкие элементы поднимаются в кору Земли. Со временем, при дальнейшем росте ядра Земли, над слоем цинка начнёт образовываться следующий по плотности ядер слой элемента эрбия затем слой железа. В настоящее время железа в ядре Земли быть не может совсем, поскольку плотность его атомов (Fe 10.92 г/см3) меньше плотности атомов веществ верхнего слоя в ядре Земли цинка (Zn 11.12 г/см3).
В ядре Земли элементы йод и теллур расположены не в той последовательности, как они находятся в таблице Д. И. Менделеева по той причине, что из-за особенностей изотопного состава элементов йод имеет меньшую атомную массу, чем теллур, следовательно, по закону Авогадро он в газообразном состоянии в одинаковых условиях будет иметь меньшую плотность и находиться выше.
Таблица представлена в упрощенном виде, поскольку многие элементы имеют по несколько изотопов, каждый из которых создал свой слой. В природе около 250 стабильных и около 50 естественных радиоактивных изотопов большая часть из которых находится в ядре Земли Для упрощения в таблице показаны изотопы только в одном слое №2, где изотоп урана 238 обогащенного ураном 235 и ураном 233, поскольку эти изотопы значительно влияет на процессы в ядре Земли. Свои слои образуют и радиоактивные изотопы продуктов ядерных реакций, протекающих в ядре Земли. Кроме того, каждый из элементов может создавать по несколько слоёв в разной степени ионизации. Количество всех слоёв ядра Земли более 300.
Используя значения объемов веществ в слоях и расположения слоев, рассчитаны радиусы верхних границ слоев элементов и их толщины, показанные в столбцах 10 и 11.
В столбце 12 показана сравнительная величина объема свободного межатомного пространства в слое по отношению к объёму кристаллического газа этого элемента. При отрицательных значениях этих величин можно предположить, что атомы несколько упруго сжаты давлением выше плотности кристаллических газов, чего может и не быть если атомы ионизированы и от этого уменьшили свои радиусы.
В столбцах 13,14 показаны рассчитанные температуры в слоях и степени ионизации вещества.
В таблице показаны рассчитанные параметры слоёв с достаточно большой точностью, но эта точность всего лишь результат математических вычислений значений. Реальная картина может несколько отличаться, тем более, что в ядре Земли постоянно протекают множество процессов, например, распадаются радиоактивные элементы, идут некоторые цепные реакции, от излучений образуются новые элементы, от повышения температуры элементы из состояния кристаллического газа переходят в состояние реального газа, снижают свою плотность и перетекают на другой горизонт, образуя другой слой. Кроме того, некоторые элементы, как водород и гелий, выходят из ядра Земли, а другие погружаются в ядро как продукты распада веществ мантии.
В таблице получилось хорошее совпадение. Количества элементов с плотностью кристаллического газа приближенной к плотности веществ ядра Земли практически совпадают с количеством этих элементов по расчёту согласно гипотезе №4 состав элементов Солнечной системы (Нуклонная концепция), что показывает правильность этой концепции.
Изотопы элементов образуют отдельные слои в ядре Земли
Гипотеза 20
Изотопы любого элемента отличаются по плотности атомов. Для тяжелых элементов различия эти небольшие, в то время как для лёгких достаточно значительны. Например, если атом водорода-протий имеет плотность 7,62 г/см3 то его изотоп-дейтерий имеет плотность в два раза больше 15,24 г/см3 и слой его в ядре находится намного глубже где-то между торием и германием, а слой изотопа-трития имеет атомы с плотностью 22,86 г/см3 и изначально, когда всё ядро находилось в состоянии веществ из кристаллических газов мог находится в самой глубине ядра ниже слоя полония. Различия в плотностях изотопов более тяжелых элементов не столь существенны и слои их как правило находятся рядом, но могут чередоваться со слоями изотопов других элементов. Изотопы разных элементов, но с одинаковыми атомными массами могут образовывать разные слои в состояние кристаллического газа, но образовывать один слой при переходе в состояниях реальных газов. Картина чередования слоёв изотопов на примере J 127, Te 130, Te 128, Te 126, Te 125, Te 124, Te 123, Te 122, Te 120, Xe 136, Xe 134, Xe 132, Xe 131, Xe 130, Xe 129, Xe 128, Xe 126, Xe 124 (рис. 20)
Рис. 20. Слои элементов с учётом изотопов. Рядом с наименованием изотопа показано значение его распространённости в природе.
Изображение с учётом изотопов даёт более сложную картину слоёв, чем по слоям элементов. Ещё более сложная картина получается если учесть и нестабильные (радиоактивные) изотопы J 129, Хе 127, Хе135, Те 129 и т. д., образующиеся как осколки деления при цепных реакциях или как продукты спонтанного деления ядер.
Цепные ядерные реакции в ядре Земли
Гипотеза 21
Структура ядра определяет процессы, которые неизбежно будут там происходить.
Ядро постоянно разогревается за счет распада радиоактивных элементов. Субъядро, состоящее из урана, под действием гравитации сепарировано на слои изотопов, имеющих разные плотности. Переходная зона, слой F урана U238 между внешним ядром и субъядром более насыщен изотопами U235 и U233. При достижении на каком-либо участке высоких концентраций U235, U233 происходят местные тепловые всплески в результате реакций цепного ядерного деления. Мощность единичного теплового всплеска невелика, поскольку значительная сверхкритическая масса собраться не может из-за начала процесса деления. Тепловые всплески порождают турбулентности, которые приводят к перемешиванию изотопов и естественным образом регулируют скорость цепной реакции. Автоматическое регулирование процесса ядерного тепловыделения также происходит за счет образования осколков деления, поглощающих нейтроны. По мере удаления за счет сепарации из зоны F или распада таких осколков скорость реакции возрастает. Мощность всего процесса мала, поскольку ограничивается небольшой скоростью сепарации U235 и U233 из-за сравнительно невысокой гравитации в ядре Земли.
Происходит и возобновление ядерного топлива. U238 и Th232 захватывают образующиеся при ядерном делении нейтроны и трансформируются в Pu239 и U233, которые являются топливом для цепных реакций ядерного деления.
При облучении нейтронами тяжелых атомов образуются разнообразные атомы актиноидов, в том числе и с малым периодом полураспада, которые, распадаясь, также выделяют энергию.
В результате радиоактивного распада урана и плутония в ядре образуются радиоактивные осколки деления от цинка до самария (рис. 11). Осколки более легкие, и всплывают в свои слои ядра Земли. Осколки перегружены нейтронами, постепенно в ходе ядерных реакций трансформируются в другие элементы. Нейтроны, образовавшиеся в ядерных реакциях, но не захваченные другими ядрами, из-за малого периода полураспада превращаются в протоны и электроны, а те при замедлении превращаются в стабильные атомы водорода, которые поднимаются к мантии. Легкие элементы, образующиеся в ядерных реакциях – водород и гелий – выходят на поверхность Земли. В отличие от гелия водород химически активен, и выходит на поверхность в виде наиболее стабильных в условиях коры Земли соединений: углеводородов, сероводорода, воды.
В ядре Земли менее мощные выделения энергии, чем на космических телах с более сильной гравитацией, где скорость сепарации выше, например, на больших планетах, а также на Солнце.