В повседневной жизни мы прогнозируем и интерпретируем поведение других людей, исходя из того, что, по нашему мнению, они знают и чего, как нам кажется, они хотят. Убеждения и желания – инструменты, которыми мы пользуемся для толкования мира в нашем интуитивном мышлении, и именно психология интуиции по сей день остается наиболее полноценной и полезной наукой о поведении. Чтобы прогнозировать большинство действий человека – то, что он подойдет к холодильнику, сядет в автобус, откроет кошелек, – не нужно разрабатывать математическую модель, моделировать нейронные сети на компьютере или нанимать профессионального психолога; достаточно спросить у своей бабушки67.
Я не хочу сказать, что психология должна больше полагаться на здравый смысл, чем физика или астрономия. И все же этот самый здравый смысл позволяет с такой точностью прогнозировать, регулировать и интерпретировать повседневное поведение по сравнению с любой другой когда-либо предложенной для этих целей альтернативой, что велика вероятность того, что он в той или иной форме будет встроен в наши лучшие научные теории. Я звоню старому другу, который живет на другом побережье, и мы договариваемся встретиться в Чикаго у входа в бар в определенном отеле в 19:45, в определенный день через два месяца. Я прогнозирую, он прогнозирует, и все, кто знает нас, прогнозируют, что в этот день мы встретимся. И мы действительно встречаемся. Поразительно! В какой еще научной области может дилетант – да и специалист тоже, собственно говоря, – прогнозировать на несколько месяцев вперед траектории двух объектов, находящихся на расстоянии тысяч миль друг от друга, с точностью до сантиметров и минут? Да еще и делать это на основе информации, которая укладывается в несколько секунд разговора? Расчеты, лежащие в основе прогнозирования, и представляют собой интуитивное мышление: знание, что я желаю встретиться со своим другом, а он желает встретиться со мной, и каждый из нас убежден, что другой будет в определенном месте в определенное время и знает последовательность перелетов, поездок и пересадок, которые необходимо совершить, чтобы туда добраться. Никакая наука, изучающая мозг и мышление, не способна достичь лучшего результата. Это не означает, что интуитивная психология убеждений и желаний сама собой представляет собой науку, однако из этого следует, что научной психологии еще предстоит объяснить, как физический объект – такой, как человеческий организм, – может иметь убеждения и желания и как выходит, что эти убеждения и желания так хорошо работают.
Традиционное объяснение сути интеллекта заключается в том, что человеческая плоть проникнута нематериальной сущностью – душой, которую обычно представляют в виде духа или привидения. Однако эта идея наталкивается на неразрешимую проблему: как этот призрак взаимодействует с твердым веществом? Как эфемерное ничто реагирует на вспышки, толчки, звуковые сигналы и заставляет наши руки и ноги двигаться? Еще одна проблема – это наличие явных доказательств того, что мышление связано с деятельностью мозга. Душу, которую называют невещественной, как мы теперь знаем, можно рассечь ножом, изменить путем воздействия химических веществ, запустить и остановить с помощью электричества, уничтожить резким ударом или недостаточным количеством кислорода. Если на мозг посмотреть в микроскоп, мы увидим, что он обладает захватывающей сложностью физической структуры, полностью соизмеримой с богатством мышления.
Есть версия, что мышление порождает некая особая форма материи – подобно тому, как Пиноккио появился из найденного Джузеппе волшебного полена, которое говорило, смеялось и двигалось само по себе. Увы, никому еще не удалось обнаружить такого чудесного вещества. Можно подумать, что таким чудесным веществом является мозговая ткань. Дарвин писал, что мозг «выделяет» мысль, а не так давно философ Джон Серль утверждал, что физико-химические свойства мозга каким-то образом позволяют ему производить мысль, как молочная железа производит молоко, а растительная ткань производит сахар. Но вспомним, что мозговая ткань всех представителей царства животных содержит одни и те же виды мембран, пор и химических веществ, не говоря уже об опухолях мозга и пробирочных культурах. Каждая частица нервной ткани обладает одними и теми же физико-химическими свойствами, но не каждая способна порождать интеллект, подобный интеллекту человека. Конечно, ткани человеческого мозга отличают некоторые свойства, необходимые для нашего интеллекта. Но одних только физических свойств недостаточно – точно так же, как физических свойств кирпичей недостаточно, чтобы объяснить особенности архитектуры, а физических свойств частиц воздуха недостаточно, чтобы объяснить музыку. Критическое значение имеет нечто в структурировании нервной ткани.
Нередко мышление пытаются объяснить за счет некоего потока энергии или силового поля. Магические шары, таинственный дым, ауры, вибрации, магнитные поля, линии силы – все это неизменные атрибуты спиритизма, псевдонауки и дешевых фильмов в жанре научной фантастики. Представители школы гештальт-психологии попытались объяснить зрительные иллюзии, ссылаясь на действие электромагнитных полей на поверхности мозга, однако обнаружить эти поля так и не удалось. Периодически поверхность мозга пытаются описать как некий носитель колебаний, который поддерживает голограммы и другие интерференционные картины, однако и эта идея не завоевала признания. Ставшая основой для теории Фрейда гидравлическая модель, подразумевающая, что психическое давление накапливается, прорывается наружу или отводится через альтернативные каналы, и по сей день прослеживается в десятках привычных для нашего уха метафор; мы говорим: накопилась злость, выпустить пар, взорваться от гнева, выплеснуть эмоции, сдержать ярость. Но даже самый большой накал страстей не означает буквально, что где-то в мозге накапливается и высвобождается энергия (в физическом смысле). В главе 6 я попытаюсь убедить вас в том, что внутреннее давление не лежит в основе деятельности мозга; скорее мозг намеренно использует его как средство ведения переговоров – как террорист, привязавший к своему телу взрывчатку.
Недостаток всех этих теорий в том, что даже если мы когда-нибудь и откроем какую-нибудь субстанцию, или вибрацию, или магический шар, который будет говорить и проказничать, как найденное Джузеппе полено, или просто будет принимать решения, основанные на совокупности рациональных правил, и преследовать свою цель, невзирая на препятствия, перед нами по-прежнему будет стоять главный вопрос: как ему это удается?
Нет, интеллект происходит не от какой-то особой разновидности духа, материи или энергии. Его источником является информация. Информация – это корреляция между двумя объектами, возникающая в результате закономерного процесса (в противоположность возникающему по чистой случайности)68. Мы говорим, что кольца на пне коррелируют с возрастом срубленного дерева (чем старше дерево, тем больше на пне колец), и эта корреляция не случайна, а связана с тем, как деревья растут. Корреляция – понятие математическое и логическое, она не имеет ничего общего с тем, из чего состоят коррелирующие объекты.
В информации как таковой нет ничего особенного; с ней мы встречаемся каждый раз, когда причина ведет к следствию. Особенное начинается, когда речь идет об обработке информации. Мы можем рассматривать частицу материи, передающую информацию о положении дел, как символ; она может «обозначать» это положение дел. Однако будучи частицей материи, она может выполнять и другие функции – физические функции, зависящие от того, что может происходить с данным типом материи в данного типа ситуации по законам физики и химии. Годичные кольца несут информацию о возрасте деревьев, но они также способны отражать свет и поглощать красящие вещества. Следы несут информацию о передвижении животного, но они также способны удерживать воду и образовывать завихрения воздушного потока.
А сейчас давайте представим вот что. Предположим, что кто-то создал машину с деталями, действия которых зависят от физических свойств какого-либо символа. Некий рычаг, привод, фотоэлемент или магнит приводится в движение пигментом, поглощенным годичным кольцом дерева, или водой, собравшейся в отпечатке ноги, или светом, отражаемым следом мела, или магнитным зарядом на участке магнитной ленты. Предположим, что далее машина производит некое другое действие с другой массой вещества: наносит еще одну отметку на кусок дерева, оставляет отпечатки следов на мокрой земле, сообщает магнитный заряд еще одному участку магнитной ленты. Пока ничего особенного не происходит: все, что я описал, – это цепь физических действий, осуществленных бесполезным приспособлением.
А теперь перейдем к особенному. Представим, что мы пытаемся интерпретировать только что полученное материальное явление, используя схему, согласно которой исходный элемент несет в себе информацию. Например, посчитаем только что полученные годичные кольца и будем интерпретировать их как возраст данного дерева в данный момент времени, несмотря на то, что их источником вовсе не был рост дерева. Допустим, что машина была сконструирована таким образом, чтобы полученные метки действительно что-то означали – то есть чтобы они несли в себе информацию о каком-то явлении в мире. Например, представим, что машина сканирует годичные кольца на пне и выжигает на специальной доске по одной метке на каждое кольцо, потом переходит к пню более молодого дерева, срубленного в то же самое время, и стирает с доски по одной метке на каждое кольцо. Сосчитав оставшиеся отметки на доске, мы получим возраст первого дерева на тот момент, когда было посажено второе дерево. В этом случае перед нами будет разумная машина, машина, которая делает истинные выводы из истинных посылок – не за счет какого-то особого вида материи или энергии и не за счет того, что какая-то из ее деталей обладает интеллектом или рассудком. Все, что мы видим, – это тщательно сконструированная цепь самых обыкновенных физических действий, первым звеном которой было конфигурирование материи, несущей в себе информацию. Наша разумная машина своей разумностью обязана двум свойствам, неразделимо соединенным в той сущности, которую мы называем символом: символ несет в себе информацию и одновременно обусловливает другие события (годичные кольца коррелируют с возрастом дерева и могут поглощать световой луч сканера). Когда явление, обусловленное другим явлением, само несет в себе информацию, мы называем такую систему процессором данных или компьютером.
Вообще вся эта схема может показаться вам нереализуемой на практике. Кто может гарантировать, что можно соединить между собой несколько штуковин так, чтобы они падали, раскачивались, мигали ровно таким образом, что получившиеся результаты можно было интерпретировать и обнаружить некий смысл? (А еще лучше, чтобы это был смысл, вписывающийся в ранее сформулированную концепцию или закономерность, которая представляется нам интересной – в конце концов, ведь постфактум толкование можно дать любым результатам, даже самым бессмысленным.) Можем ли мы быть уверены, что подобная машина будет выдавать знаки, которые будут действительно соответствовать какой-то значимой ситуации в мире (например, возрасту дерева в тот момент, когда было посажено другое дерево, или среднему возрасту отростка этого дерева, или чему-нибудь еще), а не будут просто бессмысленным рисунком, не означающим ничего вообще?
Гарантией того, что это возможно, являются труды математика Алана Тьюринга. Он разработал гипотетическую машину, входные и выходные символы которой могут соответствовать в зависимости от специфики машины одной из огромного количества разумных интерпретаций. Машина состоит из ленты, разделенной на ячейки, головки записи-чтения, которая может печатать или считывать символ в ячейке и двигать ленту в обоих направлениях, указателя, который может указывать на фиксированное количество отметок времени на корпусе машины, и набора механических рефлексов. Каждый рефлекс запускается прочитанным символом и текущим положением указателя; машина печатает символ на ленте, передвигает ленту и/или перемещает указатель. Лента, подаваемая в машину, не ограничена по количеству. Эта конструкция получила название «машина Тьюринга».
Что может делать эта простая машина? Она может считывать символы, обозначающие цифры или совокупности цифр, и печатать символы, обозначающие новые цифры, которые являются значением той или иной математической функции, решаемой посредством пошаговой последовательности операций (сложения, умножения, возведения в степень, разложения на множители и так далее – я намеренно не закрываю список, чтобы подчеркнуть важность открытия Тьюринга, не вдаваясь в технические подробности). Она может применять правила любой применимой логической системы, чтобы получать истинные утверждения из других истинных утверждений. Она может применять правила грамматики любого языка, получая грамматически правильные предложения. Эквивалентность между машинами Тьюринга, математическими функциями, логическими правилами и грамматиками привела логика Алонсо Черча к положению о том, что любая четко определенная пошаговая инструкция, которая гарантированно дает решение данной проблемы за ограниченное время (иными словами, любой алгоритм) может быть выполнена с помощью машины Тьюринга.
Что это значит? Это значит, что в той мере, в которой наш мир подчиняется решаемым пошагово математическим уравнениям, может быть создана машина, которая имитирует мир и может делать относительно него прогнозы. В той мере, в которой рациональная мысль соответствует законам логики, может быть создана машина, которая осуществляет рациональное мышление. В той мере, в которой язык можно описать как совокупность грамматических правил, может быть создана машина, которая синтезирует грамматически правильные предложения. В той мере, в которой мысль представляет собой результат применения той или иной совокупности четко определенных правил, может быть создана машина, которая в некотором смысле этого слова думает.
Тьюринг показал, что думающие машины – машины, которые, опираясь на физические свойства символов, выдают новые символы, имеющие смысл, – создать можно; более того, создать их довольно легко. Специалист по теории вычислительной техники Джозеф Вейценбаум как-то продемонстрировал, что такую машину можно построить из штемпеля, нескольких камней и рулона туалетной бумаги. На самом деле, не нужно даже иметь кучу таких машин для разных функций – одну для сложения, другую для вычисления квадратного корня, третью – для того, чтобы писать предложения на английском языке, и так далее. Существует разновидность машины Тьюринга, которая называется универсальной машиной Тьюринга. Она может считывать описание работы любой другой машины Тьюринга, напечатанной на специальной пленке, а затем в точности воспроизводить работу этой машины. Одну и туже машину можно запрограммировать делать любую работу, которую можно описать совокупностью правил69.
Означает ли это, что человеческий мозг – это машина Тьюринга? Конечно же нет. Машины Тьюринга не используются нигде и уж тем более не используются у нас в голове. На практике они бесполезны: слишком неудобны в использовании, слишком сложны для программирования, слишком медленны и громоздки. Но это неважно. Тьюринг хотел доказать только, что система из расположенных в определенном порядке приспособлений может функционировать как разумный процессор символов. Вскоре после его открытия были разработаны более практичные процессоры символов, некоторые из которых впоследствии превратились в универсальные вычислительные машины: в «Ай-би-эм», «Юнивак», а чуть позже – в «Макинтоши» и персональные компьютеры. Все они по сути представляли собой универсальную машину Тьюринга. Если не принимать во внимание размер и скорость и предоставить им столько памяти, сколько нужно, их можно запрограммировать таким образом, чтобы они выдавали одинаковые выходные данные в ответ на одинаковые входные данные.
Были предложены и такие процессоры символов, которые должны были симулировать работу человеческого мозга. Такие модели часто воспроизводятся на персональных компьютерах, но это условные модели. Персональный компьютер изначально запрограммирован на то, чтобы эмулировать деятельность гипотетического ментального компьютера (образуя то, что специалисты по вычислительной технике называют виртуальной машиной); примерно также можно запрограммировать «Макинтош» эмулировать работу персонального компьютера. Всерьез воспринимается только виртуальный ментальный компьютер, а не кремниевые микросхемы, которые реализуют его. Далее на виртуальном ментальном компьютере запускается программа, моделирующая тот или иной вид мозговой деятельности (решение задачи, понимание предложения). Перед нами – новый путь к пониманию человеческого интеллекта.
Позвольте показать, как работает одна из таких моделей. В наш век, когда реальные компьютеры стали столь сложными, что непосвященному человеку понять их так же невообразимо трудно, как и работу мозга, достаточно показательным будет пример вычисления в пошаговом рассмотрении. Только так можно оценить, насколько простые устройства способны, будучи соединены между собой, образовывать процессор символов, демонстрирующий реальные проявления интеллекта.
Неуклюжая машина Тьюринга – не лучшая реклама теории о том, что мозг – это компьютер, поэтому я возьму за образец модель, которая может хотя бы отдаленно претендовать на сходство с нашим ментальным компьютером. Я покажу, как она решает настолько сложную задачу из повседневной жизни (родственные отношения), чтобы способность машины решить ее действительно производила впечатление.
Модель, которую мы будем использовать, называется продукционной системой. В ней отсутствует явно небиологическая характеристика всех серийных компьютеров: упорядоченный список этапов программы, который машина выполняет последовательно и целенаправленно. Продукционная система состоит из памяти и совокупности реакций, которые иногда называют «демонами», потому что они представляют собой простые автономные сущности, которые, образно говоря, сидят и ждут, когда их запустят. Память – это что-то вроде доски, на которую вешают объявления. Каждый демон – как коленный рефлекс; он ждет, когда на доске появится конкретное объявление, и реагирует на его появление тем, что прикрепляет к ней свое собственное объявление. Все демоны в совокупности образуют программу. По мере того, как они реагируют на появление объявлений на доске тем, что вывешивают собственные объявления, и тем самым вызывают реакцию других демонов, и так далее, информация в памяти меняется и в конечном итоге превращается в правильную выходную информацию для данной входной информации. Некоторые демоны связаны с органами чувств и запускаются они не информацией в памяти, а информацией, поступающей из окружающего мира. Другие демоны связаны с конечностями и реагируют тем, что двигают конечности, а не тем, что вывешивают новые объявления на доске памяти.
Предположим, что ваша долгосрочная память содержит знание о всех ваших родственниках и близких. Содержимое этого знания может быть представлено в виде совокупности суждений вроде «Алекс – отец Эндрю». Согласно вычислительной теории сознания, эта информация воплощается в виде символов: совокупности физических знаков, которые коррелируют с состоянием мира, отраженным в суждениях70.
В роли символов, о которых идет речь, не могут использоваться английские слова и предложения, вопреки распространенному заблуждению о том, что мы мыслим на родном языке. Как я показал в книге «Язык как инстинкт», предложения в устной форме языка – например, английского или японского – предназначены для устной коммуникации между разумными и очень нетерпеливыми членами социума. Они стремятся к краткости, поэтому опускают всю информацию, которую слушатель может мысленно восстановить, исходя из контекста. Напротив, «язык мысли», на котором формулируются суждения, не может ничего оставлять воображению, поскольку он сам и есть воображение. Еще одна проблема с использованием английского языка как посредника в передаче знания заключается в том, что предложения на естественном языке могут быть двусмысленными. Предположим, серийный убийца Тед Банди добился отсрочки приведения в исполнение смертного приговора, и в газете появляется заголовок Bundy Beats Date with Chair, но мы не сразу понимаем, о чем идет речь, потому что наш мозг приписывает этой последовательности слов два смысла (из-за многозначности слов beats, date и chair высказывание может означать «Банди избежал казни на электрическом стуле» или «Банди ударил свою девушку стулом». – Прим. пер.). Если одна последовательность слов в английском языке может соответствовать двум значениям в мышлении, значения в мышлении не могут быть последовательностями слов в английском языке. Наконец, предложения естественного языка могут быть осложнены артиклями, предлогами, суффиксами рода, другими грамматическими деталями. Они нужны для того, чтобы легче передать информацию из одной головы в другую посредством говорения и слуха, то есть через очень медленный канал связи, но они совершенно не нужны внутри головы, где информация передается напрямую по пучкам нейронов. Итак, утверждения в системе знания – это не предложения на английском языке, а конструкции на более насыщенном информацией языке мысли, «мыслекоде».
В нашем примере образец мыслекода, который выражает семейные отношения, представлен двумя типами утверждений. Пример первого типа – Alex father-of Andrew (Алекс отец Эндрю): имя, за которым следует указание на тип родственных отношений, а затем еще одно имя. Пример второго типа – Alex is-male (Алекс мужского пола): имя, за которым следует указание на пол. Пусть вас не смущает то, что в записях мыслекода я использую английскую лексику и синтаксис. Это делается только для того, чтобы вам, читатель, было легче понять, что означают символы. В случае с машиной эти символы представляют собой разные метки. Это могут быть какие угодно символы, расположенные в каком угодно порядке – при условии, что каждый символ последовательно используется для обозначения одного и того же человека (например, тот символ, который мы используем для обозначения Алекса, всегда используется для Алекса и никогда не используется для обозначения кого-либо еще), и что они располагаются в одном и том же порядке (чтобы они могли правильно передавать информацию о том, кто чей отец). Метки могут иметь форму штрихов в штрих-коде, распознаваемом сканером, или замочных скважин, к каждой из которых подходит только один ключ, или форм, которые подходят только к одному шаблону. Естественно, в случае серийных компьютеров это будут разные последовательности расположения зарядов в кристаллах микросхем, а в случае мозга – последовательности возбуждения в группах нейронов. Здесь очень важно отметить, что машина не может понимать символы таким же образом, как вы и я; элементы конструкции машины реагируют на их форму, выполняя ту или иную операцию – как автомат для продажи жвачки реагирует на вес и форму монетки, выдавая покупателю жвачку.
Приводимый ниже пример – это попытка пролить свет на суть машинного вычисления, показать вам, как машине удается это провернуть. Чтобы более наглядно представить мое положение о том, что символ может одновременно обозначать некое понятие и механическим путем обусловливать некое событие, я покажу весь процесс работы продукционной системы шаг за шагом и опишу все происходящее дважды: на концептуальном уровне, в терминах содержания задачи и логики, которая используется для ее решения, и на механическом уровне, в терминах действий машины – считывания данных и нанесения меток. Система разумна в том смысле, что эти два уровня точно соответствуют друг другу: каждая идея соответствует метке, каждый логический шаг соответствует действию.
Назовем ту часть памяти системы, в которой содержатся записи о родственных отношениях, «Долгосрочной памятью». Другую часть назовем «Краткосрочной памятью» – это нечто вроде чернового блокнота для вычислений. Часть «Краткосрочной памяти» представляет собой область задач; в ней содержится список вопросов, на которые система пытается ответить. Системе нужно узнать, является ли Горди родным дядей по отношению ко мне (условное обозначение – Я). В самом начале память выглядит следующим образом:
На концептуальном уровне наша цель – ответить на вопрос; ответ будет положительным, если факт, которого он касается, истинен. На механическом уровне система должна определить, есть ли где-нибудь в ее памяти последовательность знаков, идентичная той последовательности, которую мы видим со знаком вопроса в колонке «Задачи». Функция одного из демонов системы – отвечать на вопросы, связанные с поиском, считывая аналогичные знаки в колонках «Задачи» и «Долгосрочная память». Обнаружив совпадение, он печатает метку рядом с вопросом, что означает, что вопрос получил положительный ответ. Для удобства давайте скажем, что метка имеет форму слова Yes (Да).