Последовательно определены векторные, тензорные и точечные пространства и операции над элементами этих пространств. Ряд утверждений доказывается в алгебраической форме, но достаточное внимание уделяется и компонентной записи. Рассмотрены спектральные свойства тензоров, тензорные функции и их производные по тензорному аргументу, тензорный анализ в трехмерном пространстве, а также на поверхностях и кривых. Дается достаточный математический аппарат для изложения дифференциальной геометрии, механики сплошной среды, физики, постановки связанных задач движения, диффузии, фазовых и химических превращений многокомпонентных сред с поверхностями разрыва. Имеются упражнения, примеры тестовых заданий и тем курсовых работ. Предназначено для студентов механико- и физико-математических направлений.