banner banner banner
Эксплуатация современных судовых дизельных установок
Эксплуатация современных судовых дизельных установок
Оценить:
 Рейтинг: 0

Эксплуатация современных судовых дизельных установок


.

Схема судового пропульсивного комплекса и описание взаимодействия его элементов приведены в источнике [2].

Гребной винт встречает воду не со скоростью движения судна V, а со скоростью V

уменьшенной на величину скорости попутного потока, который вызван трением воды вдоль сторон корпуса и увеличивает упор винта.

V

= V–V

Наличие попутного потока улучшает работу ПК, его влияние учитывается коэффициентом попутного потока.

Кроме того, в процессе работы ГВ засасывает воду из под кормы, отбрасывая ее назад и уменьшая давление воды на кормовую часть. Возникающая сила засасывания, отнесенная к упору винта, называется коэффициентом засасывания.

Обводы, размеры и состояние корпуса и кормовой части, расположение и режимы нагрузки гребного винта влияют на пропульсивные качества и оцениваются коэффициентом влияния корпуса.

где ? – коэффициент попутного потока, ? = 0,2…0,45;

t – коэффициент засасывания, t = 0,12…0,3;

i – коэффициент, учитывающий неравномерность поля скоростей в диске винта, i = 0,95…1,03.

Буксировочная мощность расходуется на преодоление сопротивления движению судна.

N

= R ? V = P

? V

Осевая скорость винта относительно воды V

незначительно отличается от скорости V

.

Пропульсивный коэффициент – это отношение буксировочной мощности к мощности подводимой к винту N

.

Пропульсивный коэффициент характеризует гидромеханические потери на ГВ при его взаимодействии с корпусом.

Помимо этих потерь следует учитывать потери в редукторной передаче ?

(при ее наличии), валопроводе ?

и потери в ГД.

Тогда К. П. Д. пропульсивного комплекса представляется в виде:

Поступь винта h

– это путь, пройденный винтом в воде за один оборот. Относительная поступь – это поступь, отнесенная к диаметру винта D.

Если бы гребной винт вращался в твердой среде, как штопор в пробке, то за один оборот он бы прошел расстояние, равное шагу винта H без скольжения.

Скольжение S – безразмерная величина, определяемая как отношение скорости скольжения V

= (H ? n

– V

) к осевой скорости винта в «твердой среде», равной H ? n

В реальных условиях скольжение винта относительно воды является условием создания упора винта. Винт отбрасывает воду назад и создает упор. Без скольжения не будет и упора винта.

Упор ГВ зависит прямо пропорционально от массы и скорости отбрасываемой воды, а потери энергии с отбрасываемой частью воды пропорциональны произведению массы на скорость воды во второй степени, поэтому КПД винта будет увеличиваться при увеличении диаметра D и снижении частоты вращения винта n

. Масса отбрасываемой воды будет возрастать при увеличении диаметра ГВ, а обороты винта n

при этом можно снизить. КПД винта зависит от относительной поступи, а также от обводов корпуса и имеет для ВФШ ярко выраженное оптимальное значение при определенном ?

На рисунке 1.1. приведены кривые действия геометрически подобных винтов фиксированного и регулируемого шага [2].

Рис 1.1. Кривые действия гребных винтов:

а) – ВФШ; б) – ВРШ [2].

Соответствующие зависимости для упора, момента, мощности и КПД винта при упрощающем допущениях, что M

n

, N

n

выражаются формулами:

Из анализа зависимостей КПД на рисунке 1.1а и 1.1б видно, что ВРШ обеспечивает работу с высоким КПД в широком диапазоне режимов. Изменения величин ?

и S происходит при значительных воздействиях на сопротивление движению судна (разгон, торможение, работа во льдах). ВРШ широко применяются в установках, где часто меняются режимы работы.

Пропульсивный комплекс должен обеспечить не только заданную спецификационную скорость движения судна за счет создания тяги Pe и подведение к винту мощности N

, но и обеспечить надежную работу в определенном диапазоне скоростей и частот вращения.

Для анализа совместной работы гребного винта, корпуса судна и ГД используют ходовые или паспортные диаграммы судна. Они представляются в виде зависимостей R = f (V) и N