Книга Метафизика опыта. Книга II. Позитивная наука - читать онлайн бесплатно, автор Шедворт Ходжсон. Cтраница 4
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Метафизика опыта. Книга II. Позитивная наука
Метафизика опыта. Книга II. Позитивная наука
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Метафизика опыта. Книга II. Позитивная наука

Это соображение приводит нас к той причине, о которой говорилось выше, что, объективируя акты счета как счетные вещи, мы рассматриваем и не можем не рассматривать их как континуумы. Дело обстоит так. Когда вниманием мы производим то разделение временного потока сознания, которое мы называем счетом 1, – а ясно, что без некоторого содержания сознания, которое нужно разделить, никакое разделение невозможно, – мы различаем момент времени, который предшествует, от момента, который следует за этим разделением; Эти два момента времени непрерывны друг с другом, за исключением того идеального разделения, которое вносит наш акт и которое, как обусловленное нашим актом, мы называем идеальным и считаем, что оно само по себе не занимает никакой продолжительности в данном временном потоке, поскольку предположить, что оно занимает, значило бы фальсифицировать данный факт собственным предположением.

В первом или, скорее, простейшем акте счета 1, следовательно, есть, по крайней мере, три вещи, неразрывно связанные между собой; два непрерывных момента времени и идеальное деление, которое делает их дискретными, то есть различает, не разделяя их. И то же самое замечание справедливо для каждого отдельного акта счета 1, следующего за первым; то есть для счета 2, или 1+1; 3, или 2 +1; 4, или 3 +1, и так далее. Мы не можем отделить, кроме как путем дальнейшей абстракции, акт счета 1, когда бы он ни происходил, от временной пропорции или вещи, которая выделяется этим актом как одна вещь. Акт счета, следовательно, есть акт, который различает или считает первый из двух непрерывных моментов, о которых только что говорилось, и который в момент счета воспринимается в ретроспективе как один, а второй из этих моментов, который в тот же момент воспринимается в предвидении, как два; два – это имя, которое характеризует его исключительно по отношению к одному; а сам акт подсчета, которым обусловлено это различие, признается актом подсчета только в результате последующего рефлексивного восприятия процесса, в котором он участвует и в котором он признается существенным или характерным ингредиентом, а не как образующий третью подсчитываемую вещь.

В качестве иллюстрации предположим, что сейчас 12 часов дня воскресенья. В этот момент я ретроспективно считаю воскресенье первым днем, а понедельник, который начинается в этот момент, предвосхищаю как второй день, который, тем не менее, не станет целым днем, пока я не смогу посчитать его также ретроспективно, в 12 часов ночи понедельника. Акт подсчета, то есть различения воскресенья как одного, понедельника как двух, вводит идеальное разделение или границу, которая сама по себе не имеет продолжительности, между двумя днями и называется 12 часов ночи воскресенья. В природе, в отличие от моего акта счета, нет такого идеального деления или предела продолжительности времени; есть только непрерывное вращение Земли вокруг своей оси, подвергающее часть за частью земной поверхности воздействию солнечных лучей, процесс, в представление которого я ввожу идеальное деление или предел, для целей вычисления и измерения. «Neque, notit Natura limitem» – это не менее глубокое, чем точное замечание Ньютона, когда он говорит о применении этого же процесса счета в дифференциальном исчислении.7

Абстрактные акты счета, таким образом, всегда и обязательно являются актами разделения континуума того или иного рода, будь то чистая длительность (как в чистом исчислении), или пространственная протяженность (как в геометрии), или то и другое вместе (как в случае движения), или какое-то другое содержание, общее для обоих (как в случае силы, интенсивности и энергии), идеальными пределами или границами, которые сами не имеют длительности или протяженности. Именно от нашей способности делать это при изучении конкретных явлений природы, будь они физически непрерывными или физически дискретными, зависит точность физических наук. Таким образом, различие между абстрактным актом подсчета или введения в данные континуумы идеальных делений, которые не занимают никакой части этих континуумов, и его результатами, а именно частями континуумов, которые отличаются друг от друга и подсчитываются или измеряются таким образом, – это различие должно быть тщательно проведено и соблюдено. Числа не имеют реального существования, кроме как в качестве зафиксированных результатов таких действий.

Следовательно, когда мы приходим к объективации актов счета, мы можем сделать это двумя способами. Если, во-первых, мы объективируем их как абстрактные акты, мы обнаружим, что все они одинаковы, – есть одна природа, общая для них всех, – есть (общий) акт счета как таковой в отличие от подсчитанных чисел, какими бы они ни были, и перед нами чисто логическая сущность, частные случаи которой неотличимы друг от друга. Но если, во-вторых, мы объективируем их (хотя и различаем только с помощью абстракции) так, как они существуют или существовали в действительности, и отличаем одно от другого, каждое как определенный акт, – то мы обнаружим, что делаем и можем сделать это различие, только принимая каждое как воплощенное или представленное определенным числом, которое оно порождает и которое является его неотделимым результатом. Каждое число или модификация числа будет тогда представлять определенный акт счета по отношению к ряду других, от которых оно непосредственно зависит; и его место в том ряду или системе чисел, к которым оно принадлежит, является единственным средством, которое мы имеем для записи и различения акта счета, который его порождает, от бесконечной серии актов счета, от которых, будучи неразличимыми в других отношениях, память отказывается сохранять отдельный след. Иными словами, любой акт счета, когда он берется как подсчитанная единица, ipso facto отождествляется с той частью непрерывного потока времени, для подсчета которой он служит и из места которой в потоке времени он извлекает свою ценность как количество.

Мы возвращаемся, таким образом, в последней инстанции к числам, и в первую очередь к ряду целых чисел Integers, как основе всей науки исчисления, а через исчисление и измерения, – поскольку не может быть измерения одной вещи другой, без предварительного различения двух вещей от одной, то есть без счета. Но, как мы видели, все Числа являются континуумами; то есть, их нельзя отличить одно от другого иначе, как воспринимая их как непрерывные части одного и того же континуума, которые становятся дискретными одно от другого только благодаря абстрактному акту счета, то есть, идеального деления (не занимая) этого континуума. Дискретное количество – это непрерывное количество, разбитое или рассматриваемое как разбитое на более мелкие

континуумы, процесс, для которого не существует поддающегося определению предела. Число само по себе является дискретной величиной в этом смысле. Я думаю, что избежать этого вывода невозможно, если только мы не предположим, что Абсолютный Логос того или иного рода создает себя и вселенную посредством некоего имманентного псевдодействия и повторного действия между логическими принципами тождества и противоречия, – идея, которая была бы странной, если бы была истинной, а также непонятной, будь она истинной или нет. В то же время необходимо помнить о нескольких вещах. Во-первых, при формировании любого ряда или системы чисел абстрагируются от конкретной природы континуума, частью которого они являются. Мы видели, что Время, как факт, является единственным континуумом, который необходим для процесса счета. Но знание этого факта не входит в природу числа, рассматриваемого ни как средство, ни как объект исчисления. Время не является объектом, измеряемым простой последовательностью актов счета, интервалы между которыми совершенно произвольны в том, что касается их продолжительности. Точно так же психологический акт целенаправленного внимания к содержанию сознания необходим для счета, а значит, и для числа. Но этот акт по своему психологическому характеру лежит полностью вне процесса-содержания счета как такового. Его длительность как психологического акта вообще не подвергается сомнению. Если время или акт внимания становятся объектом измерения или подсчета, то это должно происходить путем их предварительной объективации как особого объекта среди других. Число, короче говоря, хотя и возникает исключительно из идеального деления континуума посредством психологического акта, имеющего длительность, не является измерением ни континуума, ни акта. Однако есть объект, который оно измеряет, а значит, есть смысл, и самый существенный для него, в котором оно является измерением; объект, который оно создает, есть объект, который оно измеряет, а именно само число, посредством первого результата его фундаментального и вечно повторяющегося акта, акта счета, этим первым результатом является Единство, или число Один. Число (как общий термин) означает количество единиц. Иными словами, эталоном измерения во всех вычислениях является Единство, то есть то определение, в котором акт счета и его результат совпадают. Именно это обстоятельство придает исчислению его специфический характер среди всех других способов или наук об измерении.

Рассмотрим подробнее, как это может быть. Идеально разделяя временной континуум первым актом счета, мы смотрим назад на часть этого континуума, которая не определена в отношении его начала, и вперед на другую его часть, которая не определена в отношении его конца. Во втором акте счета мы определяем конец этой последней части, оглядываемся на нее в ретроспективе как на часть, начало которой уже определено первым актом счета, и переходим к другой части, конец которой еще не определен. В третьем акте подсчета повторяется тот же процесс, и так до тех пор, пока мы можем продолжать считать. Таким образом, продвигаясь вперед, мы продолжаем откладывать в памяти серию актов счета, каждый из которых определяет конец одной части временного континуума и начало другой, при этом сам континуум в остальном остается нерасчлененным, то есть не определенным в отношении продолжительности любой его части, кроме последовательных актов счета, которые могут происходить через совершенно произвольные и переменные интервалы.

Но в то же время нельзя избежать и обойтись без восприятия самого временного континуума. Ведь если бы не было воспринимаемого интервала между последовательными актами счета, они не могли бы восприниматься как несколько или последовательные; не было бы возможности вспомнить или записать первый акт при выполнении второго, второй – при выполнении третьего и так далее. Таким образом, временные интервалы необходимы для последовательности актов счета, то есть для числа, и все же не существует меры длины этих интервалов, кроме как запомненного или записанного количества раз, в течение которых были выполнены последовательные акты счета. Следовательно, интервал или разница между актами счета, то есть между последовательными числами, 1, 2, 3 и т. д. (а также каждое увеличение числа самих актов), измеряется 1. Или, другими словами, числовое Единство, чистое Число, является мерой интервала или разницы между 2 и 1, между 3 и 2, между 4 и 3, и так далее. Поэтому, когда мы объективируем Число в его истоках, или в его низших и простейших терминах, как результат повторяющихся актов счета, мы должны рассматривать его, как и само Время, как непрерывно растущее количество, последовательные приращения которого отмечаются и записываются только цифрами или символами, выражающими число единичных актов счета, которые пошли на их дискриминацию, в которой каждое единичное приращение обязательно соответствует одному акту счета, и поэтому обязательно равно каждому другому. Ибо тогда перед нами открываются два пути, одинаково законных и одинаково необходимых, чтобы объективировать его. Если в первом случае мы объективируем несколько актов счета как таковых, то получим ряд: 1. 2. 3. 4. и т. д., тогда как, если мы объективируем этот же ряд чисел вместе с континуумом, который они разделяют, мы получаем ряд интервалов, в котором те же самые цифры или символы представляют интервалы между отдельными актами счета и в котором мы мысленно поставляем начальную точку 0, расстояние или различие которой от первого акта счета определяется единством, то есть тем же самым расстоянием или различием, которое имеет место между всеми несколькими последующими актами счета. Каждый интервал сам по себе является числом и ничем иным, а именно числом один. В результате первоначальный временной континуум, различаемый актами идеального деления, превращается в чисто числовой континуум, то есть в континуум, в котором нет интервалов (а есть только идеальное деление) между несколькими дискретными частями, называемыми числами, из которых он состоит. И в дальнейшем для целей вычисления Числа заменяют и подменяют этот временной континуум и его идеальное деление актами целенаправленного внимания, которые являются матрицей, из которой они первоначально возникают.

Отныне числа предстают или могут предстать как нематериальные сущности, обладающие независимым или исключительно самозависимым бытием, со своими собственными свойствами и законами, связывающими их друг с другом, как если бы они были обитателями некой трансцендентной области, sui generis, далекой от обычных явлений пространственной фигуры, движения и материи; в то же время, будучи применимыми к измерению и вычислению этих явлений, они, по-видимому, вносят трансцендентный или чисто априорный элемент в науки, которые их рассматривают, а именно, в чистую геометрию и физические науки. С этой точки зрения можно сделать Числа объектом многих квазинаучных суеверий. В действительности же они обязаны как своей собственной природой, так и применимостью в геометрии и физических науках тому факту, что они берут свое начало в идеальном разделении временного континуума актами целенаправленного внимания. Воспринимаемый факт вечно делимой, но никогда не разделимой непрерывности, которой они обязаны своим происхождением, не утрачивается, а лишь трансформируется, когда они сами воспринимаются как образующие числовой, то есть дискретный, но неразделимый континуум единиц; в котором каждая единица, будучи сама континуумом, снова идеально делима на меньшие континуумы, или континуумы более низкого порядка по сравнению с исходным рядом целых чисел, а те снова на континуумы еще более низкого порядка, и так далее без заданного предела.

Теперь мы видим метафизическое обоснование тех элементарных утверждений о числе, с которых обычно начинаются арифметические трактаты. Я беру следующее из «Универсальной арифметики» Ньютона, «In usum Juventutis Academicoe»:

«Под числом мы понимаем не столько множество единств, сколько абстрактную пропорцию любого количества чего бы то ни было к другому количеству того же рода, которое принимается за единство. Число бывает трех видов: целое, дробное и избыточное. Целое число – это то, мерой которого является единица. Дробь – это число, мерой которого является подмногочисленная часть единства. Дробь – это то, что не может быть измерено единицей».8

Здесь можно задать вопрос, как, отбросив дроби, можно представить себе какое-либо число, не измеряемое единицей. Ответ, по-видимому, заключается в том, что Ньютон имеет здесь в виду числа, которые названы только общими терминами, то есть названы как воображаемые результаты, не осуществимые в действительности определенных процессов вычисления, которые, если предположить (jper impossibile), что они могут быть доведены до конца, дали бы определенные числа, соизмеримые с единством, как их результат. Теперь, поскольку алгебра – это та ветвь всей науки вычислений, которая основана на обобщении арифметических чисел и процессов, – каждое обобщение выражается некоторым символом, позволяющим использовать его в вычислениях, как если бы это было конкретное число или конкретный вид процесса, – а Ньютон рассматривает здесь элементы арифметики и алгебры в сочетании, мы должны предположить, что он имеет в виду главным образом алгебру, когда называет сурды третьим из трех высших видов, на которые делится все число.

Корни возникают в алгебре в процессе извлечения так называемых корней из чисел, которые таким образом ipso facto рассматриваются как силы; и корни, и силы используются в алгебре как общие термины для обозначения предполагаемых результатов определенных процессов вычислений. Под силами числа понимаются числовые результаты, которые получаются при умножении этого числа на само себя любое заданное число раз, например, 2 x 2 = 4; 4 x 2 = 8; 8 x 2 = 16 и так далее; где 4 – это вторая сила (или квадрат) 2, записываемая как 22; 8 – это третья сила (или куб), записываемая как 23; 16 – это четвертая сила, записываемая как 24. Обратный этому процесс – извлечение корня. Он состоит в том, чтобы найти, какое число, умноженное определенное количество раз на само себя, даст то число, квадратный, кубический, четвертый, пятый и т. д. корень которого требуется. Но здесь возникает трудность, обусловленная, как обычно бывает в таких случаях, предположением, а именно предположением, что каждое данное число – это сила. Ибо, хотя нам нетрудно возвести любое данное число в любую заданную силу путем умножения, из этого отнюдь не следует, что мы можем довести до конца обратный процесс извлечения корня из любого данного числа. Это обязательно следует только в случае тех чисел, которые ранее были достигнуты прямым процессом. Мысль о том, что все данные числа являются производными от корней, а также просто числами, возникла в результате обобщения успешных примеров извлечения корней и, следовательно, ожидания успеха в тех случаях, когда в действительности можно получить лишь воображаемые результаты. То, что эти два процесса обратны друг другу по виду, не означает, что они одинаково применимы к любому данному числу.

Поэтому во всех случаях извлечения корня, когда данное число, корень из которого требуется извлечь, не является заведомо целым, перед нами не простой процесс вычисления, а проблема, проблема, заключающаяся в том, чтобы найти, имеет ли данное число корень или нет. Из того, что в задаче предлагается найти корень из данного числа, не следует, что искомый корень может быть найден. Например, «число точных квадратов бесконечно; но в любых заданных пределах существует гораздо больше чисел, не имеющих точных квадратных корней, чем точных квадратов»9.

А в алгебре, цитируя другого авторитета, «когда корень из алгебраической величины, которая требуется, не может быть точно получен, он называется иррациональным или перенасыщенным количеством. Таким образом, ∛a2 или a2/3 называется прибавочной величиной».10

Переходя ко второй и, безусловно, наиболее обширной и важной ветви всей науки исчисления, а именно к алгебре, используя этот термин в самом широком смысле, мы находим первый параграф «Универсальной арифметики» Ньютона следующим образом:

«Вычисления производятся либо с помощью чисел, как в обычной арифметике, либо с помощью символов с общим значением (видов), как это практикуется аналитиками. Каждый вид опирается на одни и те же основания и стремится к одной и той же цели; Арифметика – определенно и конкретно, Алгебра – неопределенно и универсально. Таким образом, в широком смысле все формулировки, используемые в алгебраических вычислениях, и особенно их выводы, можно назвать теоремами. Но главное достоинство алгебры состоит в том, что в то время как вопросы арифметики решаются только путем перехода от заданных величин к искомым, алгебра по большей части идет от искомых величин, взятых как если бы они были заданными, к заданным величинам, взятым как если бы они были искомыми; чтобы прийти, во что бы то ни стало, к некоторому выводу или уравнению, из которого может быть получено искомое количество. Таким образом решаются самые сложные задачи, решение которых тщетно пыталась бы найти только Арифметика. Тем не менее, Арифметика настолько подчиняет себе Алгебру во всех ее операциях, что обе они вместе составляют единую совершенную Науку вычислений; по этой причине я предлагаю излагать обе эти науки вместе».11

В этом отрывке есть несколько моментов, которые, кажется, требуют разъяснения. Термин «виды» я перефразировал, а не перевел как «символы, имеющие общее значение»; общее – это термин обычного логического мышления, который наиболее точно соответствует тому, что в чисто количественном мышлении выражается неопределенным. Значение видов в настоящее время дано самим Ньютоном как эквивалент букв, используемых для обозначения количеств, которые либо неизвестны, либо считаются неопределенными. «Когда количество чего-либо неизвестно или считается неопределенным {indeterminate spectatur), так что оно не может быть выражено числами (ita lit per numeros non liceat exprimere), мы имеем обыкновение обозначать его каким-либо видом или буквой (speciem aliquant seu literam). А если мы считаем известные величины неопределенными, то для определенности обозначаем их начальными буквами алфавита, a, b, c, d, а неизвестные величины – его конечными буквами, z, y, x и т. д.12

И снова, на стр. 6, a, b и x даны как примеры видов, а ab и abx – как выражения для процесса их умножения друг на друга. Таким образом, два различных вида величин, как и те, которые выражаются просто арифметическими числами, могут рассматриваться совместно с помощью этих двух классов алгебраических символов.

Из этого мы видим, что, по крайней мере, должно подразумеваться под краткими выражениями proceeding a qucesitis tanquam datis и ad datas tanquam qucesitas quantitates. Мы исходим «из искомых величин, как если бы они были величинами данными», когда обозначаем их буквами, которые можем использовать в качестве элементов в процессах вычисления, как если бы они были известными числами; это возможно только потому, что они косвенно даны посредством тех их отношений к другим числам или величинам, которыми они описываются в задачах, касающихся их, и без которых мы не имели бы о них никакого представления. Символы x, y, z и т. д. – это общие термины, описывающие любое число, которое отвечает заданному описанию или принадлежит к заданному классу, и которое, следовательно, в пределах этого класса может быть определено в неограниченном диапазоне. Символы a, b, c, d и т. д. также являются общими терминами, применимыми к классам, но ограничены для обозначения некоторой минимальной величины, которая не меняется в процессе вычисления, хотя конкретная величина остается неопределенной. Неизвестные величины первого класса называются переменными, второго – константами. Именно из соотношений, заданных таким общим образом, и нужно выявить искомые числа или величины. И при этом мы ipso facto переходим «к заданным величинам, как если бы они были искомыми величинами», а именно, когда мы выражаем действительно заданные отношения как результат вычислений, в которых используются буквы, обозначающие неизвестные квезиты.

Данные отношения, о которых мы говорим, между числами или количествами, которые сами по себе не даны, а искомы, отношения, которые подразумеваются в значении букв, обозначающих эти искомые количества, являются в исчислении тем же, чем являются обобщения или общие описания в обычном мышлении, наукой о котором является логика. Они соответствуют тому, что в логике называется «вторыми намерениями», а арифметические числа – ее «первым намерениям». Как если бы в обычном логическом мышлении нам дали отношения, выражаемые сложным общим термином «разумный бесперый двуногий» (для простоты используем старый пример), и потребовали найти индивидуальное существо, соответствующее описанию, а именно человека. Или, опять же, как если бы был дан термин «разумный бесперый четвероногий»; в этом случае требуемое индивидуальное существо, соответствующее описанию, если предположить, что его не удастся найти, будет аналогично либо нулю, либо избыточному или невозможному количеству в числах, количеству, называемому воображаемым, потому что оно не мыслимо, то есть не реализуемо в мысли, но продолжает быть выражением для процесса, неспособного быть доведенным до точного завершения.

Такие процессы от общих понятий к частным случаям плодотворны в чистой математической мысли, потому что ex hypothesi она имеет дело только с чистым количеством, дискретным или непрерывным, а не с какими бы то ни было общими понятиями, которые могут быть порождены воображением intellectus sibi permissus. Ее методы, ограниченные этим объектом-материей, позволяют отличить истинное от ложного, мыслимое от немыслимого. Чистая математика, как и все точные науки, необходимой основой которых она является, имеет дело с объектами (используя этот термин в самом широком смысле) лишь постольку, поскольку они либо поддаются измерению, либо могут быть проверены с точки зрения измеримости. Мы уже видели, что арифметика рассматривает числа как целостные и независимые объекты, имеющие различные значения по отношению друг к другу, как если бы они были множеством атомов, молекул или масс материи, принадлежащих к различным видам химических веществ. Хотя они являются продуктами мысли вне восприятия, но, как мы видели, мысль немедленно возвращает их в перцептивный порядок, представляя каждое число как логически единичное и индивидуальное существо. Более сложные или сложные законы их комбинаций должны быть открыты, как и в случае с реальной материей, путем дальнейших упражнений мысли, то есть концепции и рассуждения. И этим дальнейшим упражнением в случае арифметических чисел, которые являются Реальностями вычисления, является Алгебра, метод, который является обобщением арифметического метода, выводящим явно все то, что в арифметике подразумевается, но не развивается.